ترغب بنشر مسار تعليمي؟ اضغط هنا

CITIUS: an IR-XUV light source for fundamental and applied ultrafast science

47   0   0.0 ( 0 )
 نشر من قبل De Ninno Giovanni
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from IR to XUV. The XUV pulses (about 10^5-10^8 photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, allowing also to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10^{12}-10^{15} photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse that generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. The new light source will become the fulcrum of a new center located at the University of Nova Gorica, active in a wide range of scientific fields, including materials science, catalysis, biochemistry and magnetism. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for studying of ultra-fast dynamics.

قيم البحث

اقرأ أيضاً

We propose a novel concept for efficient dynamic tuning of optical properties of a high refractive index subwavelength nanoparticle with a magnetic Mie-type resonance by means of femtosecond laser radiation. This concept is based on ultrafast generat ion of electron-hole plasma within such nanoparticle, drastically changing its transient dielectric permittivity. This allows to manipulate by both electric and magnetic nanoparticle responses, resulting in dramatic changes of its extinction cross section and scattering diagram. Specifically, we demonstrate the effect of ultrafast switching-on a Huygens source in the vicinity of the magnetic dipole resonance. This approach enables to design ultrafast and compact optical switchers and modulators based on the ultrafast magnetic light concept.
Radiation damage is one of the most severe resolution limiting factors in x-ray imaging, especially relevant to biological samples. One way of circumventing this problem is to exploit correlation-based methods developed in quantum imaging. Among thes e, there is ghost imaging (GI) in which the image is formed by radiation that has never interacted with the sample. Here, we demonstrate GI at an XUV free-electron laser by utilizing correlation techniques. We discuss the experimental challenges, optimal setup, and crucial ingredients to maximize the achievable resolution.
Silicon waveguides have enabled large-scale manipulation and processing of near-infrared optical signals on chip. Yet, expanding the bandwidth of guided waves to other frequencies would further increase the functionality of silicon as a photonics pla tform. Frequency multiplexing by integrating additional architectures is one approach to the problem, but this is challenging to design and integrate within the existing form factor due to scaling with the free-space wavelength. Here, we demonstrate that a hexagonal boron nitride (hBN)/silicon hybrid waveguide can enable dual-band operation at both mid-infrared (6.5-7.0 um) and telecom (1.55 um) frequencies, respectively. Our device is realized via lithography-free transfer of hBN onto a silicon waveguide, maintaining near-infrared operation, while mid-infrared waveguiding of the hyperbolic phonon polaritons (HPhPs) in hBN is induced by the index contrast between the silicon waveguide and the surrounding air, thereby eliminating the need for deleterious etching of the hBN. We verify the behavior of HPhP waveguiding in both straight and curved trajectories, and validate their propagation characteristics within an analytical waveguide theoretical framework. This approach exemplifies a generalizable approach based on integrating hyperbolic media with silicon photonics for realizing frequency multiplexing in on-chip photonic systems.
Leveraging the unrivaled performance of optical clocks in applications in fundamental physics beyond the standard model, in geo-sciences, and in astronomy requires comparing the frequency of distant optical clocks truthfully. Meeting this requirement , we report on the first comparison and agreement of fully independent optical clocks separated by 700 km being only limited by the uncertainties of the clocks themselves. This is achieved by a phase-coherent optical frequency transfer via a 1415 km long telecom fiber link that enables substantially better precision than classical means of frequency transfer. The fractional precision in comparing the optical clocks of three parts in $10^{17}$ was reached after only 1000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than with any other existing frequency transfer method. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.
Quantum light sources are characterized by their distinctive statistical distribution of photons. For example, single photons and correlated photon pairs exhibit antibunching and reduced variance in the number distribution that is impossible with cla ssical light. Most common realizations of quantum light sources have relied on spontaneous parametric processes such as down-conversion (SPDC) and four-wave mixing (SFWM). These processes are mediated by vacuum fluctuations of the electromagnetic field. Therefore, by manipulating the electromagnetic mode structure, for example, using nanophotonic systems, one can engineer the spectrum of generated photons. However, such manipulations are susceptible to fabrication disorders which are ubiquitous in nanophotonic systems and lead to device-to-device variations in the spectrum of generated photons. Here, we demonstrate topologically robust mode engineering of the electromagnetic vacuum fluctuations and implement a nanophotonic quantum light source where the spectrum of generated photons is robust against fabrication disorders. Specifically, we use the topological edge states to achieve an enhanced and robust generation of correlated photon pairs using SFWM and show that they outperform their topologically-trivial counterparts. We demonstrate the non-classical nature of our source using conditional antibunching of photons which confirms that we have realized a robust source of heralded single photons. Such topological effects, which are unique to bosonic systems, could pave the way for the development of robust quantum photonic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا