ﻻ يوجد ملخص باللغة العربية
Vanadium dioxide(VO$_2$) is a paradigmatic example of a strongly correlated system that undergoes a metal-insulator transition at a structural phase transition. To date, this transition has necessitated significant post-hoc adjustments to theory in order to be described properly. Here we report standard state-of-the-art first principles quantum Monte Carlo (QMC) calculations of the structural dependence of the properties of VO$_2$. Using this technique, we simulate the interactions between electrons explicitly, which allows for the metal-insulator transition to naturally emerge, importantly without ad-hoc adjustments. The QMC calculations show that the structural transition directly causes the metal-insulator transition and a change in the coupling of vanadium spins. This change in the spin coupling results in a prediction of a momentum-independent magnetic excitation in the insulating state. While two-body correlations are important to set the stage for this transition, they do not change significantly when VO$_2$ becomes an insulator. These results show that it is now possible to account for electron correlations in a quantitatively accurate way that is also specific to materials.
We present a detailed infrared study of the insulator-to-metal transition (IMT) in vanadium dioxide (VO2) thin films. Conventional infrared spectroscopy was employed to investigate the IMT in the far-field. Scanning near-field infrared microscopy dir
The metal-insulator transition and unconventional metallic transport in vanadium dioxide (VO$_2$) are investigated with a combination of spectroscopic ellipsometry and reflectance measurements. The data indicates that electronic correlations, not ele
The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperatur
We use optical-pump terahertz-probe spectroscopy to investigate the near-threshold behavior of the photoinduced insulator-to-metal (IM) transition in vanadium dioxide thin films. Upon approaching Tc a reduction in the fluence required to drive the IM
We use polarization- and temperature-dependent x-ray absorption spectroscopy, in combination with photoelectron microscopy, x-ray diffraction and electronic transport measurements, to study the driving force behind the insulator-metal transition in V