ﻻ يوجد ملخص باللغة العربية
The thermoelectric properties in one- and two-dimensional silicon and germanium structures have been investigated using first-principle density functional techniques and linear response for the thermal and electrical transport. We have considered here the two-dimensional silicene and germanene, together with nano-ribbons of different widths. For the nano-ribbons, we have also investigated the possibility of nano-structuring these systems by mixing silicon and germanium. We found that the figure of merit at room temperature of these systems is remarkably high, up to 2.5.
We present first-principles calculations of silicene/graphene and germanene/graphene bilayers. Various supercell models are constructed in the calculations in order to reduce the strain of the lattice-mismatched bilayer systems. Our energetics analys
We model Raman processes in silicene and germanene involving scattering of quasiparticles by, either, two phonons, or, one phonon and one point defect. We compute the resonance Raman intensities and lifetimes for laser excitations between 1 and 3$,$e
We report on total-energy electronic structure calculations in the density-functional theory performed for the ultra-thin atomic layers of Si on Ag(111) surfaces. We find several distinct stable silicene structures: $sqrt{3}timessqrt{3}$, $3times3$,
We propose a guideline for exploring substrates that stabilize the monolayer honeycomb structure of silicene and germanene while simultaneously preserve the Dirac states: in addition to have a strong binding energy to the monolayer, a suitable substr
As graphene became one of the most important materials today, there is a renewed interest on others similar structures. One example is silicene, the silicon analogue of graphene. It share some the remarkable graphene properties, such as the Dirac con