ﻻ يوجد ملخص باللغة العربية
We propose an experimental scheme to realize the valley-dependent gauge fields for ultracold fermionic atoms trapped in a state-dependent square optical lattice. Our scheme relies on two sets of Raman laser beams to engineer the hopping between adjacent sites populated by two-component fermionic atoms. One set of Raman beams are used to realize a staggered pi-flux lattice, where low energy atoms near two inequivalent Dirac points should be described by the Dirac equation for spin-1/2 particles. Another set of laser beams with proper Rabi frequencies are added to further modulate the atomic hopping parameters. The hopping modulation will give rise to effective gauge potentials with opposite signs near the two valleys, mimicking the interesting strain-induced pseudo-gauge fields in graphene. The proposed valley-dependent gauge fields are tunable and provide a new route to realize quantum valley Hall effects and atomic valleytronics.
Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest leng
We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where
Since the discovery of topological insulators, many topological phases have been predicted and realized in a range of different systems, providing both fascinating physics and exciting opportunities for devices. And although new materials are being d
We demonstrate the experimental implementation of an optical lattice that allows for the generation of large homogeneous and tunable artificial magnetic fields with ultracold atoms. Using laser-assisted tunneling in a tilted optical potential we engi
We employ the exact diagonalization method to analyze the possibility of generating strongly correlated states in two-dimensional clouds of ultracold bosonic atoms which are subjected to a geometric gauge field created by coupling two internal atomic