ترغب بنشر مسار تعليمي؟ اضغط هنا

UB CCD photometry of the old, metal rich, open clusters NGC 6791, NGC 6819 and NGC 7142

148   0   0.0 ( 0 )
 نشر من قبل Alberto Buzzoni
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Carraro




اسأل ChatGPT حول البحث

We report on a UV-oriented imaging survey in the fields of the old, metal-rich open clusters, NGC 6791, NGC 6819 and NGC 7142. These three clusters represent both very near and ideal stellar aggregates to match the distinctive properties of the evolved stellar populations, as in elliptical galaxies and bulges of spirals. The CMD of the three clusters is analyzed in detail, with special emphasis to the hot stellar component. We report, in this regard, one new extreme horizontal-branch star candidate in NGC 6791. For NGC 6819 and 7142, the stellar luminosity function points to a looser radial distribution of faint lower Main Sequence stars, either as a consequence of cluster dynamical interaction with the Galaxy or as an effect of an increasing fraction of binary stars toward the cluster core, as actually observed in NGC 6791 too.

قيم البحث

اقرأ أيضاً

We studied solar-like oscillations in 115 red giants in the three open clusters NGC 6791, NGC 6811, and NGC 6819, based on photometric data covering more than 19 months with NASAs Kepler space telescope. We present the asteroseismic diagrams of the a symptotic parameters delta u_02, delta u_01 and epsilon, which show clear correlation with fundamental stellar parameters such as mass and radius. When the stellar populations from the clusters are compared, we see evidence for a difference in mass of the red giant branch stars, and possibly a difference in structure of the red clump stars, from our measurements of the small separations delta u_02 and delta u_01. Ensemble {e}chelle diagrams and upper limits to the linewidths of l = 0 modes as a function of Delta u of the clusters NGC 6791 and NGC 6819 are also shown, together with the correlation between the l = 0 ridge width and the T_eff of the stars. Lastly, we distinguish between red giant branch and red clump stars through the measurement of the period spacing of mixed dipole modes in 53 stars among all the three clusters to verify the stellar classification from the color-magnitude diagram. These seismic results also allow us to identify a number of special cases, including evolved blue stragglers and binaries, as well as stars in late He-core burning phases, which can be potentially interesting targets for detailed theoretical modeling.
In the framework of a project aiming at deriving in a homogeneous way the properties (age, distance, reddening and detailed chemical abundances) of a large sample of old open clusters, we present here the metal abundance and the abundance ratios of l ight (C, N, O, Na, Mg, Al, Si, Ca, Ti) and heavier (Cr, Mn, Ni, Ba, Eu) elements in the galactic open clusters NGC 6253 and NGC 6791. We performed spectrum synthesis of selected lines on high resolution spectra of four red clump stars in NGC 6253, taken with the UVES and FEROS spectrographs. We also determined abundances of the same elements for four red clump stars in NGC 6791, observed with SARG, for which we had derived the atmospheric parameters and the iron, carbon and oxygen abundances in a previous paper (Gratton et al. 2006). The average metallicity of NGC 6253 is [Fe/H]=+0.46 (rms = 0.03 dex, systematic error = 0.08 dex), obtained by extensive spectral synthesis of Fe lines. This intermediate age cluster closely resembles the old open cluster NGC 6791, as far as the chemical composition is concerned. C, N, O do not show any significant abundance scatter; they are underabundant with respect to the solar values both in NGC 6253 and NGC 6791. We also find no evident star-to-star scatter in any of the elements measured in both clusters, with the possible exception of Na in NGC 6791. The two clusters show very similar abundances, except for Mg, overabundant in NGC 6791 and not in NGC 6253. Both have solar scaled alpha-elements abundances. We have compared our abundance ratios with literature values for disk giants and dwarfs and bulge giants, finding a general good agreement with the run of elemental ratios with [Fe/H] of disk objects.
93 - S. Hekker , S. Basu , D. Stello 2011
Context: Four open clusters are present in the Kepler field of view and timeseries of nearly a year in length are now available. These timeseries allow us to derive asteroseismic global oscillation parameters of red-giant stars in the three open clus ters NGC 6791, NGC 6819 and NGC 6811. From these parameters and effective temperatures, we derive mass, radii and luminosities for the clusters as well as field red giants. Aims: We study the influence of evolution and metallicity on the observed red-giant populations. Methods: The global oscillation parameters are derived using different published methods and the effective temperatures are derived from 2MASS colours. The observational results are compared with BaSTI evolution models. Results: We find that the mass has significant influence on the asteroseismic quantities delta_nu vs. nu_max relation, while the influence of metallicity is negligible, under the assumption that the metallicity does not affect the excitation / damping of the oscillations. The positions of the stars in the H-R diagram depend on both mass and metallicity. Furthermore, the stellar masses derived for the field stars are bracketed by those of the cluster stars. Conclusions: Both the mass and metallicity contribute to the observed difference in locations in the H-R diagram of the old metal-rich cluster NGC 6791 and the middle-aged solar-metallicity cluster NGC 6819. For the young cluster NGC 6811, the explanation of the position of the stars in the H-R diagram challenges the assumption of solar metallicity, and this open cluster might have significantly lower metallicity [Fe/H] in the range -0.3 to -0.7 dex. Also, nearly all the observed field stars seem to be older than NGC 6811 and younger than NGC 6791.
NGC 6791 is a unique stellar system among Galactic open clusters being at the same time one of the oldest open clusters and the most metal rich. Combination of its properties is puzzling and poses question of its origin. One possible scenario is that the cluster formed close to the Galactic Center and later migrated outwards to its current location. In this work we study the clusters orbit and investigate the possible migration processes which might have displaced NGC 6791 to its present-day position, under the assumption that it actually formed in the inner disk. To this aim we performed integrations of NGC 6791s orbit in a potential consistent with the main Milky Way parameters. In addition to analytical expressions for halo, bulge and disk, we also consider the effect of bar and spiral arm perturbations, which are expected to be very important for the disk dynamical evolution, especially inside the solar circle. Starting from state-of-the art initial conditions for NGC 6791, we calculate 1000 orbits back in time for about 1 Gyr turning on and off different non-axisymmetric components of the global potential. We then compare statistical estimates of the clusters recent orbital parameters with the orbital parameters of 10^4 test-particles originating close to the Galactic Center (having initial galocentric radii in the range of 3-5 kpc) and undergoing radial migration during 8 Gyr of forward integration. We find that a model which incorporates a strong bar and spiral arm perturbations can indeed be responsible for the migration of NGC 6791 from the inner disk (galocentric radii of 3-5 kpc) to its present-day location. Such a model can provide orbital parameters which are close enough to the observed ones. However, the probability of this scenario as it results from our investigations is very low.
We present initial results on some of the properties of open clusters NGC 6791 and NGC 6819 derived from asteroseismic data obtained by NASAs Kepler mission. In addition to estimating the mass, radius and log g of stars on the red-giant branch of the se clusters, we estimate the distance to the clusters and their ages. Our model-independent estimate of the distance modulus of NGC 6791 is (m-M)_0= 13.11pm 0.06. We find (m-M)_0= 11.85pm 0.05 for NGC 6819. The average mass of stars on the red-giant branch of NGC 6791 is 1.20 pm 0.01 M_sun, while that of NGC 6819 is 1.68pm 0.03M_sun. It should be noted that we do not have data that cover the entire red-giant branch and the actual mass will be somewhat lower. We have determined model-dependent estimates of ages of these clusters. We find ages between 6.8 and 8.6 Gyr for NGC 6791, however, most sets of models give ages around 7Gyr. We obtain ages between 2 and 2.4 Gyr for NGC 6819.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا