ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational waves from known pulsars: results from the initial detector era

128   0   0.0 ( 0 )
 نشر من قبل Matthew Pitkin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.

قيم البحث

اقرأ أيضاً

We present the result of searches for gravitational waves from 200 pulsars using data from the first observing run of the Advanced LIGO detectors. We find no significant evidence for a gravitational-wave signal from any of these pulsars, but we are a ble to set the most constraining upper limits yet on their gravitational-wave amplitudes and ellipticities. For eight of these pulsars, our upper limits give bounds that are improvements over the indirect spin-down limit values. For another 32, we are within a factor of 10 of the spin-down limit, and it is likely that some of these will be reachable in future runs of the advanced detector. Taken as a whole, these new results improve on previous limits by more than a factor of two.
The next galactic core-collapse supernova (CCSN) has already exploded, and its electromagnetic (EM) waves, neutrinos, and gravitational waves (GWs) may arrive at any moment. We present an extensive study on the potential sensitivity of prospective de tection scenarios for GWs from CCSNe within 5Mpc, using realistic noise at the predicted sensitivity of the Advanced LIGO and Advanced Virgo detectors for 2015, 2017, and 2019. We quantify the detectability of GWs from CCSNe within the Milky Way and Large Magellanic Cloud, for which there will be an observed neutrino burst. We also consider extreme GW emission scenarios for more distant CCSNe with an associated EM signature. We find that a three detector network at design sensitivity will be able to detect neutrino-driven CCSN explosions out to ~5.5 kpc, while rapidly rotating core collapse will be detectable out to the Large Magellanic Cloud at 50kpc. Of the phenomenological models for extreme GW emission scenarios considered in this study, such as long-lived bar-mode instabilities and disk fragmentation instabilities, all models considered will be detectable out to M31 at 0.77 Mpc, while the most extreme models will be detectable out to M82 at 3.52 Mpc and beyond.
72 - M. Pitkin , C. Gill , J. Veitch 2012
We describe the consistency testing of a new code for gravitational wave signal parameter estimation in known pulsar searches. The code uses an implementation of nested sampling to explore the likelihood volume. Using fake signals and simulated noise we compare this to a previous code that calculated the signal parameter posterior distributions on both a grid and using a crude Markov chain Monte Carlo (MCMC) method. We define a new parameterisation of two orientation angles of neutron stars used in the signal model (the initial phase and polarisation angle), which breaks a degeneracy between them and allows more efficient exploration of those parameters. Finally, we briefly describe potential areas for further study and the uses of this code in the future.
We present a search for gravitational waves from 221 pulsars with rotation frequencies $gtrsim 10$ Hz. We use advanced LIGO data from its first and second observing runs spanning 2015-2017, which provides the highest-sensitivity gravitational-wave da ta so far obtained. In this search we target emission from both the $l = m = 2$ mass quadrupole mode, with a frequency at twice that of the pulsars rotation, and from the $l = 2$, $m = 1$ mode, with a frequency at the pulsar rotation frequency. The search finds no evidence for gravitational-wave emission from any pulsar at either frequency. For the $l = m = 2$ mode search, we provide updated upper limits on the gravitational-wave amplitude, mass quadrupole moment, and fiducial ellipticity for 167 pulsars, and the first such limits for a further 55. For 20 young pulsars these results give limits that are below those inferred from the pulsars spin-down. For the Crab and Vela pulsars our results constrain gravitational-wave emission to account for less than 0.017% and 0.18% of the spin-down luminosity, respectively. For the recycled millisecond pulsar J0711-6830 our limits are only a factor of 1.3 above the spin-down limit, assuming the canonical value of $10^{38}$ kg m$^2$ for the stars moment of inertia, and imply a gravitational-wave-derived upper limit on the stars ellipticity of $1.2!times!10^{-8}$. We also place new limits on the emission amplitude at the rotation frequency of the pulsars.
We study the putative emission of gravitational waves (GWs) in particular for pulsars with measured braking index. We show that the appropriate combination of both GW emission and magnetic dipole brakes can naturally explain the measured braking inde x, when the surface magnetic field and the angle between the magnetic dipole and rotation axes are time dependent. Then we discuss the detectability of these very pulsars by aLIGO and the Einstein Telescope. We call attention to the realistic possibility that aLIGO can detect the GWs generated by at least some of these pulsars, such as Vela, for example.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا