ترغب بنشر مسار تعليمي؟ اضغط هنا

Finding an infection source under the SIS model

449   0   0.0 ( 0 )
 نشر من قبل Wuqiong Luo
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of identifying an infection source based only on an observed set of infected nodes in a network, assuming that the infection process follows a Susceptible-Infected-Susceptible (SIS) model. We derive an estimator based on estimating the most likely infection source associated with the most likely infection path. Simulation results on regular trees suggest that our estimator performs consistently better than the minimum distance centrality based heuristic.



قيم البحث

اقرأ أيضاً

80 - T. Yeo 2020
Here, we consider an SIS epidemic model where the individuals are distributed on several distinct patches. We construct a stochastic model and then prove that it converges to a deterministic model as the total population size tends to infinity. Furth ermore, we show the existence and the global stability of a unique endemic equilibrium provided that the migration rates of susceptible and infectious individuals are equal. Finally, we compare the equilibra with those of the homogeneous model, and with those of isolated patches.
A rumor spreading in a social network or a disease propagating in a community can be modeled as an infection spreading in a network. Finding the infection source is a challenging problem, which is made more difficult in many applications where we hav e access only to a limited set of observations. We consider the problem of estimating an infection source for a Susceptible-Infected model, in which not all infected nodes can be observed. When the network is a tree, we show that an estimator for the source node associated with the most likely infection path that yields the limited observations is given by a Jordan center, i.e., a node with minimum distance to the set of observed infected nodes. We also propose approximate source estimators for general networks. Simulation results on various synthetic networks and real world networks suggest that our estimators perform better than distance, closeness, and betweenness centrality based heuristics.
In this paper we provide the derivation of a super compact pairwise model with only 4 equations in the context of describing susceptible-infected-susceptible (SIS) epidemic dynamics on heterogenous networks. The super compact model is based on a new closure relation that involves not only the average degree but also the second and third moments of the degree distribution. Its derivation uses an a priori approximation of the degree distribution of susceptible nodes in terms of the degree distribution of the network. The new closure gives excellent agreement with heterogeneous pairwise models that contain significantly more differential equations.
In this paper, we analyze dynamic switching networks, wherein the networks switch arbitrarily among a set of topologies. For this class of dynamic networks, we derive an epidemic threshold, considering the SIS epidemic model. First, an epidemic proba bilistic model is developed assuming independence between states of nodes. We identify the conditions under which the epidemic dies out by linearizing the underlying dynamical system and analyzing its asymptotic stability around the origin. The concept of joint spectral radius is then used to derive the epidemic threshold, which is later validated using several networks (Watts-Strogatz, Barabasi-Albert, MIT reality mining graphs, Regular, and Gilbert). A simplified version of the epidemic threshold is proposed for undirected networks. Moreover, in the case of static networks, the derived epidemic threshold is shown to match conventional analytical results. Then, analytical results for the epidemic threshold of dynamic networksare proved to be applicable to periodic networks. For dynamic regular networks, we demonstrate that the epidemic threshold is identical to the epidemic threshold for static regular networks. An upper bound for the epidemic spread probability in dynamic Gilbert networks is also derived and verified using simulation.
We formulate a generalized susceptible exposed infectious recovered (SEIR) model on a graph, describing the population dynamics of an open crowded place with an arbitrary topology. As a sample calculation, we discuss three simple cases, both analytic ally, and numerically, by means of a cellular automata simulation of the individual dynamics in the system. As a result, we provide the infection ratio in the system as a function of controllable parameters, which allows for quantifying how acting on the human behavior may effectively lower the disease spread throughout the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا