ﻻ يوجد ملخص باللغة العربية
We compare the number density of compact (small size) massive galaxies at low and high redshift using our Padova Millennium Galaxy and Group Catalogue (PM2GC) at z=0.03-0.11 and the CANDELS results from Barro et al. (2013) at z=1-2. The number density of local compact galaxies with luminosity weighted (LW) ages compatible with being already passive at high redshift is compared with the density of compact passive galaxies observed at high-z. Our results place an upper limit of a factor ~2 to the evolution of the number density and are inconsistent with a significant size evolution for most of the compact galaxies observed at high-z. The evolution may be instead significant (up to a factor 5) for the most extreme, ultracompact galaxies. Considering all compact galaxies, regardless of LW age and star formation activity, a minority of local compact galaxies (<=1/3) might have formed at z<1. Finally, we show that the secular decrease of the galaxy stellar mass due to simple stellar evolution may in some cases be a non-negligible factor in the context of the evolution of the mass-size relation, and we caution that passive evolution in mass should be taken into account when comparing samples at different redshifts.
The evolution of number density, size and intrinsic colour is determined for a volume-limited sample of visually classified early-type galaxies selected from the HST/ACS images of the GOODS North and South fields (version 2). The sample comprises 457
The dramatic size evolution of early-type galaxies from z ~ 2 to 0 poses a new challenge in the theory of galaxy formation, which may not be explained by the standard picture. It is shown here that the size evolution can be explained if the non-baryo
Massive compact systems at 0.2<z<0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme o
We investigate the origin of intergalactic light (IGL) in close groups of galaxies. IGL is hypothesized to be the byproduct of interaction and merger within compact groups. Comparing the X-ray point source population in our sample of compact groups t
The classical cosmological V/Vm-test is introduced and elaborated. Use of the differential distribution p(V/Vm) of the V/Vm-variable rather than just the mean <V/Vm> leads directly to the cosmological number density without any need for assumptions a