ترغب بنشر مسار تعليمي؟ اضغط هنا

Tiling Problems on Baumslag-Solitar groups

139   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We exhibit a weakly aperiodic tile set for Baumslag-Solitar groups, and prove that the domino problem is undecidable on these groups. A consequence of our construction is the existence of an arecursive tile set on Baumslag-Solitar groups.



قيم البحث

اقرأ أيضاً

In this paper we classify Baumslag-Solitar groups up to commensurability. In order to prove our main result we give a solution to the isomorphism problem for a subclass of Generalised Baumslag-Solitar groups.
A $mathcal{Z}$-structure on a group $G$ was introduced by Bestvina in order to extend the notion of a group boundary beyond the realm of CAT(0) and hyperbolic groups. A refinement of this notion, introduced by Farrell and Lafont, includes a $G$-equiv ariance requirement, and is known as an $mathcal{EZ}$-structure. The general questions of which groups admit $mathcal{Z}$- or $mathcal{EZ}$-structures remain open. In this paper we add to the current knowledge by showing that all Baumslag-Solitar groups admit $mathcal{EZ}$-structures and all generalized Baumslag-Solitar groups admit $mathcal{Z}$-structures.
121 - Yves Stalder 2004
We study convergent sequences of Baumslag-Solitar groups in the space of marked groups. We prove that BS(m,n) --> F_2 for |m|,|n| --> infty and BS(1,n) --> Z wr Z for |n| --> infty. For m fixed, |m|>1, we show that the sequence (BS(m,n))_n is not con vergent and characterize many convergent subsequences. Moreover if X_m is the set of BS(m,n)s for n relatively prime to m and |n|>1, then the map BS(m,n) mapsto n extends continuously on the closure of X_m to a surjection onto invertible m-adic integers.
Let $BS(1,n) =< a, b | aba^{-1} = b^n >$ be the solvable Baumslag-Solitar group, where $ ngeq 2$. It is known that BS(1,n) is isomorphic to the group generated by the two affine maps of the real line: $f_0(x) = x + 1$ and $h_0(x) = nx $. This pap er deals with the dynamics of actions of BS(1,n) on closed orientable surfaces. We exhibit a smooth BS(1,n) action without finite orbits on $TT ^2$, we study the dynamical behavior of it and of its $C^1$-pertubations and we prove that it is not locally rigid. We develop a general dynamical study for faithful topological BS(1,n)-actions on closed surfaces $S$. We prove that such actions $<f,h | h circ f circ h^{-1} = f^n>$ admit a minimal set included in $fix(f)$, the set of fixed points of $f$, provided that $fix(f)$ is not empty. When $S= TT^2$, we show that there exists a positive integer $N$, such that $fix(f^N)$ is non-empty and contains a minimal set of the action. As a corollary, we get that there are no minimal faithful topological actions of BS(1,n) on $TT^2$. When the surface $S$ has genus at least 2, is closed and orientable, and $f$ is isotopic to identity, then $fix(f)$ is non empty and contains a minimal set of the action. Moreover if the action is $C^1$ then $fix(f)$ contains any minimal set.
We exhibit a regular language of geodesics for a large set of elements of $BS(1,n)$ and show that the growth rate of this language is the growth rate of the group. This provides a straightforward calculation of the growth rate of $BS(1,n)$, which was initially computed by Collins, Edjvet and Gill in [5]. Our methods are based on those we develop in [8] to show that $BS(1,n)$ has a positive density of elements of positive, negative and zero conjugation curvature, as introduced by Bar-Natan, Duchin and Kropholler in [1].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا