ﻻ يوجد ملخص باللغة العربية
We study the number of measurements required for quantum process tomography under prior information, such as a promise that the unknown channel is unitary. We introduce the notion of an interactive observable and we show that any unitary channel acting on a $d$-level quantum system can be uniquely identified among all other channels (unitary or otherwise) with only $O(d^2)$ interactive observables, as opposed to the $O(d^4)$ required for tomography of arbitrary channels. This result generalizes, so that channels with at most $q$ Kraus operators can be identified with only $O(qd^2)$ interactive observables. Slight improvements can be obtained if we wish to identify such a channel only among unital channels or among other channels with $q$ Kraus operators. These results are proven via explicit construction of large subspaces of Hermitian matrices with various conditions on rank, eigenvalues, and partial trace. Our constructions are built upon various forms of totally nonsingular matrices.
The accurate and reliable characterization of quantum dynamical processes underlies efforts to validate quantum technologies, where discrimination between competing models of observed behaviors inform efforts to fabricate and operate qubit devices. W
In the present work, we propose a generalization of the confidence polytopes approach for quantum state tomography (QST) to the case of quantum process tomography (QPT). Our approach allows obtaining a confidence region in the polytope form for a Cho
Quantum process tomography is an experimental technique to fully characterize an unknown quantum process. Standard quantum process tomography suffers from exponentially scaling of the number of measurements with the increasing system size. In this wo
A Bayesian approach to quantum process tomography has yet to be fully developed due to the lack of appropriate probability distributions on the space of quantum channels. Here, by associating the Choi matrix form of a completely positive, trace prese
Quantum process tomography is a necessary tool for verifying quantum gates and diagnosing faults in architectures and gate design. We show that the standard approach of process tomography is grossly inaccurate in the case where the states and measure