ترغب بنشر مسار تعليمي؟ اضغط هنا

The locations of halo formation and the peaks formalism

162   0   0.0 ( 0 )
 نشر من قبل Oliver Hahn
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the problem of predicting the halo mass function from the properties of the Lagrangian density field. We focus on a perturbation spectrum with a small-scale cut-off (as in warm dark matter cosmologies). This cut-off results in a strong suppression of low mass objects, providing additional leverage to rigorously test which perturbations collapse and to what mass. We find that all haloes are consistent with forming near peaks of the initial density field, with a strong correlation between proto-halo density and ellipticity. We demonstrate that, while standard excursion set theory with correlated steps completely fails to reproduce the mass function, the inclusion of the peaks constraint leads to the correct number of haloes but significantly underpredicts the masses of low-mass objects (with the predicted halo mass function at low masses behaving like dn/dln m ~ m^{2/3}). This prediction is very robust and cannot be easily altered within the framework of a single collapse barrier. The nature of collapse in the presence of a small-scale cut-off thus reveals that excursion set calculations require a more detailed understanding of the collapse-time of a general ellipsoidal perturbation to predict the ultimate collapsed mass of a peak -- a problem that has been hidden in the large abundance of small-scale structure in CDM. We demonstrate how this problem can be resolved within the excursion set framework.

قيم البحث

اقرأ أيضاً

The simplest stochastic halo formation models assume that the traceless part of the shear field acts to increase the initial overdensity (or decrease the underdensity) that a protohalo (or protovoid) must have if it is to form by the present time. Eq uivalently, it is the difference between the overdensity and (the square root of the) shear that must be larger than a threshold value. To estimate the effect this has on halo abundances using the excursion set approach, we must solve for the first crossing distribution of a barrier of constant height by the random walks associated with the difference, which is now (even for Gaussian initial conditions) a non-Gaussian variate. The correlation properties of such non-Gaussian walks are inherited from those of the density and the shear, and, since they are independent processes, the solution is in fact remarkably simple. We show that this provides an easy way to understand why earlier heuristic arguments about the nature of the solution worked so well. In addition to modelling halos and voids, this potentially simplifies models of the abundance and spatial distribution of filaments and sheets in the cosmic web.
We present evidence for halo assembly bias as a function of geometric environment. By classifying GAMA galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are o lder than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. The trend with geometric environment is reversed at large halo mass, with haloes in knots being younger than haloes of the same mass in voids. We find a clear signal of halo downsizing - more massive haloes host galaxies that assembled their stars earlier. This overall trend holds independently of geometric environment. We support our analysis with an in-depth exploration of the L-Galaxies semi-analytic model, used here to correlate several galaxy properties with three different definitions of halo formation time. We find a complex relationship between halo formation time and galaxy properties, with significant scatter. We confirm that stellar mass to halo mass ratio, specific star-formation rate and mass-weighed age are reasonable proxies of halo formation time, especially at low halo masses. Instantaneous star-formation rate is a poor indicator at all halo masses. Using the same semi-analytic model, we create mock spectral observations using complex star-formation and chemical enrichment histories, that approximately mimic GAMAs typical signal-to-noise and wavelength range. We use these mocks to assert how well potential proxies of halo formation time may be recovered from GAMA-like spectroscopic data.
Using cosmological N-body simulations, we study the abundance of local maxima (peaks) and minima (dips) identified in the smoothed distribution of halos and dark matter (DM) on scales of $10-100$s Mpcs. The simulations include Gaussian and local-type $f_{rm NL}$ non-Gaussian initial conditions. The expression derived in the literature for the abundance (irrespective of height) of peaks for Gaussian fields is surprisingly accurate for the evolved halo and DM density fields for all initial conditions considered. Furthermore, the height distribution is very well fitted by a log-normal on quasi-linear scales. The abundance as a function of scale depends on the cosmological parameters ($H_0$ and background matter densities) through the shape of the power spectrum, but it is insensitive to the clustering amplitude. Further, the abundance in the smoothed halo distribution is substantially different in the non-Gaussian from the Gaussian simulations. The interpretation of this effect is straightforward in terms of the scale dependence of halo bias in non-Gaussian models. The abundance of extrema extracted from three-dimensional large galaxy redshift surveys could be a competitive probe of the cosmological parameters and initial non-Gaussianity. It breaks the degeneracy between $f_{rm NL}$ and the clustering amplitude, making it complementary to counts of galaxy clusters and peaks in weak-lensing maps.
349 - Alina Sabyr 2021
In order to extract full cosmological information from next-generation large and high-precision weak lensing (WL) surveys (e.g. Euclid, Roman, LSST), higher-order statistics that probe the small-scale, non-linear regime of large scale structure (LSS) need to be utilized. WL peak counts, which trace overdensities in the cosmic web, are one promising and simple statistic for constraining cosmological parameters. The physical origin of WL peaks have previously been linked to dark matter halos along the line of sight and this peak-halo connection has been used to develop various semi-analytic halo-based models for predicting peak counts. Here, we study the origin of WL peaks and the effectiveness of halo-based models for WL peak counts using a suite of ray-tracing N-body simulations. We compare WL peaks in convergence maps from the full simulations to those in maps created from only particles associated with halos -- the latter playing the role of a perfect halo model. We find that while halo-only contributions are able to replicate peak counts qualitatively well, halos do not explain all WL peaks. Halos particularly underpredict negative peaks, which are associated with local overdensities in large-scale underdense regions along the line of sight. In addition, neglecting non-halo contributions to peaks counts leads to a significant bias on the parameters ($Omega_{rm m}$, $sigma_{8}$) for surveys larger than $geq$ 100 deg$^{2}$. We conclude that other elements of the cosmic web, outside and far away from dark matter halos, need to be incorporated into models of WL peaks in order to infer unbiased cosmological constraints.
79 - Laura Marian 2013
We study the cosmological information of weak lensing (WL) peaks, focusing on two other statistics besides their abundance: the stacked tangential-shear profiles and the peak-peak correlation function. We use a large ensemble of simulated WL maps wit h survey specifications relevant to future missions like Euclid and LSST, to explore the three peak probes. We find that the correlation function of peaks with high signal-to-noise (S/N) measured from fields of size 144 sq. deg. has a maximum of ~0.3 at an angular scale ~10 arcmin. For peaks with smaller S/N, the amplitude of the correlation function decreases, and its maximum occurs on smaller angular scales. We compare the peak observables measured with and without shape noise and find that for S/N~3 only ~5% of the peaks are due to large-scale structures, the rest being generated by shape noise. The covariance matrix of the probes is examined: the correlation function is only weakly covariant on scales < 30 arcmin, and slightly more on larger scales; the shear profiles are very correlated for theta > 2 arcmin, with a correlation coefficient as high as 0.7. Using the Fisher-matrix formalism, we compute the cosmological constraints for {Om_m, sig_8, w, n_s} considering each probe separately, as well as in combination. We find that the correlation function of peaks and shear profiles yield marginalized errors which are larger by a factor of 2-4 for {Om_m, sig_8} than the errors yielded by the peak abundance alone, while the errors for {w, n_s} are similar. By combining the three probes, the marginalized constraints are tightened by a factor of ~2 compared to the peak abundance alone, the least contributor to the error reduction being the correlation function. This work therefore recommends that future WL surveys use shear peaks beyond their abundance in order to constrain the cosmological model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا