ترغب بنشر مسار تعليمي؟ اضغط هنا

The clustering of ALFALFA galaxies: dependence on HI mass, relationship to optical samples & clues on host halo properties

277   0   0.0 ( 0 )
 نشر من قبل Emmanouil Papastergis
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a sample of ~6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21cm survey, to measure the clustering properties of HI-selected galaxies. We find no convincing evidence for a dependence of clustering on the galactic atomic hydrogen (HI) mass, over the range M_HI ~ 10^{8.5} - 10^{10.5} M_sun. We show that previously reported results of weaker clustering for low-HI mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that HI-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of HI-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than HI-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies avoid being located within ~3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi LambdaCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic HI mass is not tightly related to host halo mass, and that a sizable fraction of subhalos do not host HI galaxies. Lastly, we find that we can recover fairly well the correlation function of HI galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.

قيم البحث

اقرأ أيضاً

We investigate the clustering of HI-selected galaxies in the ALFALFA survey and compare results with those obtained for HIPASS. Measurements of the angular correlation function and the inferred 3D-clustering are compared with results from direct spat ial-correlation measurements. We are able to measure clustering on smaller angular scales and for galaxies with lower HI masses than was previously possible. We calculate the expected clustering of dark matter using the redshift distributions of HIPASS and ALFALFA and show that the ALFALFA sample is somewhat more anti-biased with respect to dark matter than the HIPASS sample.
We use a stacking technique to measure the average HI content of a volume-limited sample of 1871 AGN host galaxies from a parent sample of galaxies selected from the SDSS and GALEX imaging surveys with stellar masses greater than 10^10 M_sun and reds hifts in the range 0.025<z<0.05. HI data are available from the Arecibo Legacy Fast ALFA (ALFALFA) survey. In previous work, we found that the HI gas fraction in galaxies correlates most strongly with the combination of optical/UV colour and stellar surface mass density. We therefore build a control sample of non-AGN matched to the AGN hosts in these two properties. We study trends in HI gas mass fraction (M(HI)/M_*), where M_* is the stellar mass) as a function of black hole accretion rate indicator L[OIII]/M(BH). We find no significant difference in HI content between AGN and control samples at all values of black hole accretion rate probed by the galaxies in our sample. This indicates that AGN do not influence the large-scale gaseous properties of galaxies in the local Universe. We have studied the variation in HI mass fraction with black hole accretion rate in the blue and red galaxy populations. In the blue population, the HI gas fraction is independent of accretion rate, indicating that accretion is not sensitive to the properties of the interstellar medium of the galaxy on large scales. However, in the red population accretion rate and gas fraction do correlate. The measured gas fractions in this population are not too different from the ones expected from a stellar mass loss origin, implying that the fuel supply in the red AGN population could be a mixture of mass loss from stars and gas present in disks.
We report results from a study of the HI content and stellar properties of nearby galaxies detected by the Arecibo Legacy Fast ALFA blind 21-cm line survey and the Sloan Digital Sky Survey in two declination strips covering a total area of 9 hr X 16 deg. Our analysis seeks to assemble a control sample of galaxies suitable for providing absolute measures of the HI content of gaseous objects. From a database of ~15,000 HI detections, we have assembled three samples of gas-rich galaxies expected to show little or no evidence of interaction with their surroundings that could provide adequate HI standards. The most reliable results are obtained with a sample of 5647 sources found in low density environments, as defined by a nearest neighbor approach. The other two samples contain several hundred relatively isolated galaxies each, as determined from standard isolation algorithms. We find that isolated objects are not particularly gas-rich compared to their low-density-environment counterparts, while they suffer from selection bias and span a smaller dynamic range. All this makes them less suitable for defining a reference for HI content. We have explored the optical morphology of gaseous galaxies in quiet environments finding that, within the volume surveyed, the vast majority of them display unequivocal late-type galaxy features. In contrast, bona fide gas-rich early-type systems account only for a negligible fraction of the 21-cm detections. We argue that HI emission provides the most reliable way to determine the morphological population to which a galaxy belongs. We have also observed that the color distribution of flux-limited samples of optically-selected field HI emitters does not vary significantly with increasing distance, while that of non-detections becomes notably redder. This result suggests that the colors and HI masses of gas-rich galaxies cannot be very closely related.
77 - Jingjing Shi 2017
The simplest analyses of halo bias assume that halo mass alone determines halo clustering. However, if the large scale environment is fixed, then halo clustering is almost entirely determined by environment, and is almost completely independent of ha lo mass. We show why. Our analysis is useful for studies which use the environmental dependence of clustering to constrain cosmological and galaxy formation models. It also shows why many correlations between galaxy properties and environment are merely consequences of the underlying correlations between halos and their environments, and provides a framework for quantifying such inherited correlations.
A string of recent studies has debated the exact form and physical origin of an evolutionary trend between the peak luminosity of Type Ia supernovae (SNe Ia) and the properties of the galaxies that host them. We shed new light on the discussion by pr esenting an analysis of ~200 low-redshift SNe Ia in which we measure the separation of Hubble residuals (HR; as probes of luminosity) between two host-galaxy morphological types. We show that this separation can test the predictions made by recently proposed models, using an independently and empirically determined distribution of each morphological type in host-property space. Our results are partially consistent with the new HR--age slope, but we find significant scatter in the predictions from different galaxy catalogues. The inconsistency in age illuminates an issue in the current debate that was not obvious in the long-discussed mass models: HR--host-property models are strongly dependent on the methods employed to determine galaxy properties. While our results demonstrate the difficulty in constructing a universal model for age as a proxy for host environment, our results indeed identify evolutionary trends between mass, age, morphology, and HR values, encouraging (or requiring, if such trends are to be accounted for in cosmological studies) further investigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا