ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling correlations between financial variables and topological metrics of trading networks: Evidence from a stock and its warrant

93   0   0.0 ( 0 )
 نشر من قبل Zhi-Qiang Jiang
 تاريخ النشر 2013
  مجال البحث مالية
والبحث باللغة English
 تأليف Ming-Xia Li




اسأل ChatGPT حول البحث

Traders adopt different trading strategies to maximize their returns in financial markets. These trading strategies not only results in specific topological structures in trading networks, which connect the traders with the pairwise buy-sell relationships, but also have potential impacts on market dynamics. Here, we present a detailed analysis on how the market behaviors are correlated with the structures of traders in trading networks based on audit trail data for the Baosteel stock and its warrant at the transaction level from 22 August 2005 to 23 August 2006. In our investigation, we divide each trade day into 48 time windows with a length of five minutes, construct a trading network within each window, and obtain a time series of over 1,100 trading networks. We find that there are strongly simultaneous correlations between the topological metrics (including network centralization, assortative index, and average path length) of trading networks that characterize the patterns of order execution and the financial variables (including return, volatility, intertrade duration, and trading volume) for the stock and its warrant. Our analysis may shed new lights on how the microscopic interactions between elements within complex system affect the systems performance.



قيم البحث

اقرأ أيضاً

This paper analyzes correlations in patterns of trading of different members of the London Stock Exchange. The collection of strategies associated with a member institution is defined by the sequence of signs of net volume traded by that institution in hour intervals. Using several methods we show that there are significant and persistent correlations between institutions. In addition, the correlations are structured into correlated and anti-correlated groups. Clustering techniques using the correlations as a distance metric reveal a meaningful clustering structure with two groups of institutions trading in opposite directions.
130 - Fenghua Wen 2019
This paper investigates the effect of cross-shareholding on stock price synchronicity, as a measure of price informativeness, of the listed firms in the Chinese stock market. We gauge firms levels of cross-shareholdings in terms of centrality in the cross-shareholding network. It is confirmed that it is through a noise-reducing process that cross-shareholding promotes price synchronicity and reduces price delay. More importantly, this effect on price informativeness is pronounced for large firms and in the periods of market downturns. Overall, our analyses provide insights into the relation between the ownership structure and price informativeness.
516 - Taisei Kaizoji 2013
In this study, we investigate the statistical properties of the returns and the trading volume. We show a typical example of power-law distributions of the return and of the trading volume. Next, we propose an interacting agent model of stock markets inspired from statistical mechanics [24] to explore the empirical findings. We show that as the interaction among the interacting traders strengthens both the returns and the trading volume present power-law behavior.
We investigated the topological properties of stock networks through a comparison of the original stock network with the estimated stock network from the correlation matrix created by the random matrix theory (RMT). We used individual stocks traded o n the market indices of Korea, Japan, Canada, the USA, Italy, and the UK. The results are as follows. As the correlation matrix reflects the more eigenvalue property, the estimated stock network from the correlation matrix gradually increases the degree of consistency with the original stock network. Each stock with a different number of links to other stocks in the original stock network shows a different response. In particular, the largest eigenvalue is a significant deterministic factor in terms of the formation of a stock network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا