ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for VHE Gamma-Ray Emission from Young SNe with H.E.S.S

78   0   0.0 ( 0 )
 نشر من قبل Dirk Lennarz
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Lennarz




اسأل ChatGPT حول البحث

Supernova (SN) remnants are a well motivated candidate for the acceleration sites of cosmic rays with energies up to the knee (10^15 eV). It has been suggested that also young SNe (~<1 year after the explosion) may be able to accelerate cosmic rays to even higher energies. A smoking gun for cosmic-ray acceleration in young SNe would be the production of very-high-energy (VHE, >10 GeV) gamma-ray radiation. The H.E.S.S. imaging air Cherenkov telescope array is an instrument sensitive to such radiation. In this contribution, the pointing directions of the H.E.S.S. telescopes are compared to a recently published, extragalactic SN catalogue to identify coincidental observations. The results of the data analysis are discussed.

قيم البحث

اقرأ أيضاً

The W49 region hosts two bright radio sources: the star forming region W49A and the supernova remnant W49B. The 10^6 M_odot Giant Molecular Cloud W49A is one of the most luminous giant radio HII regions in our Galaxy and hosts several active, high-ma ss star formation sites. The mixed-morphology supernova remnant W49B has one of the highest surface brightness in radio of all the SNRs of this class in our Galaxy and is one of the brightest ejecta-dominated SNRs in X-rays. Infrared observations evidenced that W49B is interacting with molecular clouds and Fermi recently reported the detection of a coincident bright, high-energy gamma-ray source. Observations by the H.E.S.S. telescope array resulted in the significant detection of VHE gamma-ray emission from the W49 region, compatible with VHE emission from the SNR W49B. The results, the morphology and the origin of the VHE emission are presented in the multi-wavelength context and the implications on the origin of the signal are discussed.
81 - P. Eger , C. van Eldik 2013
Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV<E<100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters cores or from inverse Compton (IC) scattering of relativistic leptons accelerated in the GC environment. GCs could also constitute a new class of sources in the very-high-energy (VHE, E>100 GeV) gamma-ray regime, judging from the recent detection of emission from the direction of Terzan 5 with the H.E.S.S. telescope array. To search for VHE gamma-ray sources associated with other GCs, and to put constraints on leptonic emission models, we systematically analyzed the observations towards 15 GCs taken with H.E.S.S. We searched for individual sources of VHE gamma-rays from each GC in our sample and also performed a stacking analysis combining the data from all GCs to investigate the hypothesis of a population of faint emitters. Assuming IC emission as the source of emission from Terzan 5, we calculated the expected gamma-ray flux for each of the 15 GCs, based on their number of millisecond pulsars, their optical brightness and the energy density of background photon fields. We did not detect significant emission from any of the 15 GCs. The obtained flux upper limits allow to rule out the simple IC/msPSR scaling model for NGC 6388 and NGC 7078. The upper limits derived from the stacking analyses are factors between 2 and 50 below the flux predicted by the simple leptonic model, depending on the assumed source extent and the dominant target photon fields. Therefore, Terzan 5 still remains exceptional among all GCs, as the VHE gamma-ray emission either arises from extra-ordinarily efficient leptonic processes, or from a recent catastrophic event, or is even unrelated to the GC itself.
Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV<E<100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters cores or from inverse Compton (IC) scattering of relativistic leptons accelerated in the GC environment. These stellar clusters could also constitute a new class of sources in the very-high-energy (VHE, E>100 GeV) gamma-ray regime, judging from the recent detection of a signal from the direction of Terzan 5 with the H.E.S.S. telescope array. We searched for point-like and extended VHE gamma-ray emission from 15 GCs serendipitously covered by H.E.S.S observations and also performed a stacking analysis combining the data from all GCs to investigate the hypothesis of a population of faint emitters. Assuming IC emission as the origin of the VHE gamma-ray signal from the direction of Terzan 5, we calculated the expected gamma-ray flux from each of the 15 GCs, based on their number of millisecond pulsars, their optical brightness and the energy density of background photon fields. We did not detect significant VHE gamma-ray emission from any of the 15 GCs in either of the two analyses. Given the uncertainties related to the parameter determinations, the obtained flux upper limits allow to rule out the simple IC/msPSR scaling model for NGC 6388 and NGC 7078. The upper limits derived from the stacking analyses are factors between 2 and 50 below the flux predicted by the simple leptonic scaling model, depending on the assumed source extent and the dominant target photon fields. Therefore, Terzan 5 still remains exceptional among all GCs, as the VHE gamma-ray emission either arises from extra-ordinarily efficient leptonic processes, or from a recent catastrophic event, or is even unrelated to the GC itself.
Supernova remnants (SNRs) have emerged as one of the largest source classes in very-high-energy (VHE; E>0.1,TeV) astronomy. Many of the now known VHE gamma-ray emitting SNRs have been discovered by the H.E.S.S. imaging Cherenkov telescope array, than ks to its unique access to the inner galaxy. Statistically-significant emission of VHE gamma rays has now been detected from the direction of the supernova remnant G15.4+0.1. While the centroids of the H.E.S.S. source and the shell-type SNR are compatible, the VHE morphology suggests a center-dominated source at TeV energies, something which is at odds with the shell-like morphology observed at radio frequencies. This suggests that H.E.S.S. may be observing TeV emission from a previously unknown pulsar wind nebula (PWN) located within the boundaries of the radio shell. If this interpretation is correct, G15.4+0.1 would in fact be a composite SNR, the first case in which an SNR is identified as a composite on the basis of VHE gamma-ray observations. Archival data from MAGPIS gives exciting hints that there is radio emission from the central parts of the remnant, giving support to this hypothesis. Unfortunately, image artefacts from a nearby strong radio source produce considerable uncertainties in the radio analysis. Additional observations in both the radio and X-ray are needed to confirm the composite nature of G15.4+0.1 suggested by H.E.S.S.
The Geminga pulsar, one of the brighest gamma-ray sources, is a promising candidate for emission of very-high-energy (VHE > 100 GeV) pulsed gamma rays. Also, detection of a large nebula have been claimed by water Cherenkov instruments. We performed d eep observations of Geminga with the MAGIC telescopes, yielding 63 hours of good-quality data, and searched for emission from the pulsar and pulsar wind nebula. We did not find any significant detection, and derived 95% confidence level upper limits. The resulting upper limits of 5.3 x 10^{-13} TeV cm^{-2} s^{-1} for the Geminga pulsar and 3.5 x 10^{-12} TeV cm^{-2} s^{-1} for the surrounding nebula at 50 GeV are the most constraining ones obtained so far at VHE. To complement the VHE observations, we also analyzed 5 years of Fermi-LAT data from Geminga, finding that the sub-exponential cut-off is preferred over the exponential cut-off that has been typically used in the literature. We also find that, above 10 GeV, the gamma-ray spectra from Geminga can be described with a power law with index softer than 5. The extrapolation of the power-law Fermi-LAT pulsed spectra to VHE goes well below the MAGIC upper limits, indicating that the detection of pulsed emission from Geminga with the current generation of Cherenkov telescopes is very difficult.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا