ترغب بنشر مسار تعليمي؟ اضغط هنا

New Cataclysmic Variable 1RXS J161659.5+620014 in Draco

406   0   0.0 ( 0 )
 نشر من قبل Denis Denisenko
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a new cataclysmic variable MASTER OT J161700.81+620024.9 which is identical to the faint ROSAT X-ray source 1RXS J161659.5+620014. The object was observed in outbursts to 14.4m on 2012 Sep. 11 by MASTER-Tunka and to 14.3m on 2013 Jan. 21/22 by MASTER-Kislovodsk, but was not detected by the routine search procedures. Analysis of the archival MASTER data and CRTS light curve shows the variability from 17.8m at quiescence to 14.3m in outbursts, confirming that the new variable is a dwarf nova. SDSS colors suggest a small contribution from the secondary component and are telling in favor of the short orbital period.

قيم البحث

اقرأ أيضاً

Results of photometric and spectroscopic investigations of the recently discovered disc cataclysmic variable star 1RXS J180834.7+101041 are presented. Emission spectra of the system show broad double peaked hydrogen and helium emission lines. Doppler maps for the hydrogen lines demonstrate strongly non-uniform emissivity distribution in the disc, similar to that found in IP Peg. It means that the system is a new cataclysmic variable with a spiral density wave in the disc. Masses of the components (M_WD = 0.8 +/- 0.22 M_sun and M_RD = 0.14 +/- 0.02 M_sun), and the orbit inclination (i = 78 +/- 1.5 deg) were estimated using the various well-known relations for cataclysmic variables.
67 - A. Price , B. Gary , J. Bedient 2004
We present time-series observations, spectra and archival outburst data of a newly-discovered variable star in Hercules, Var Her 04. Its orbital period, mass ratio, and outburst amplitude resemble those of the UGWZ-type subclass of UGSU dwarf novae. However, its supercycle and outburst light curve defy classification as a clear UGWZ. Var Her 04 is most similar to the small group of possible hydrogen-burning ``period bouncers, dwarf novae that have passed beyond the period minimum and returned.
We report the discovery of 1RXS J173006.4+033813, a polar cataclysmic variable with a period of 120.21 min. The white dwarf primary has a magnetic field of B = 42+6-5 MG, and the secondary is a M3 dwarf. The system shows highly symmetric double peake d photometric modulation in the active state as well as in quiescence. These arise from a combination of cyclotron beaming and ellipsoidal modulation. The projected orbital velocity of the secondary is K2 = 390+-4 km/s. We place an upper limit of 830+-65 pc on the distance.
We study the newly discovered variable star GSC 4560--02157. CCD photometry was performed in 2013--2014, and a spectrum was obtained with the 6-m telescope in June, 2014. GSC 4560--02157 is demonstrated to be a short-period (P=0.265359d) eclipsing va riable star. All its flat-bottom primary minima are approximately at the same brightness level, while the stars out-of-eclipse brightness and brightness at secondary minimum varies considerably (by up to 0.6m) from cycle to cycle. Besides, there are short-term (time scale of 0.03-0.04 days) small-amplitude brightness variations out of eclipse. This behavior suggests cataclysmic nature of the star, confirmed with a spectrum taken on June 5, 2014. The spectrum shows numerous emissions of the hydrogen Balmer series, HeI, HeII.
We report the discovery of a new eclipsing polar, CRTS J035010.7+323230 (hereafter CRTS J0350+3232). We identified this cataclysmic variable (CV) candidate as a possible polar from its multi-year Catalina Real-Time Transient Survey (CRTS) optical lig ht curve. Photometric monitoring of 22 eclipses in 2015 and 2017 was performed with the 2.1-m Otto Struve Telescope at McDonald Observatory. We derive an unambiguous high-precision ephemeris. Strong evidence that CRTS J0350+3232 is a polar comes from optical spectroscopy obtained over a complete orbital cycle using the Apache Point Observatory 3.5-m telescope. High velocity Balmer and He II $lambda$4686{AA} emission line equivalent width ratios, structures, and variations are typical of polars and are modulated at the same period, 2.37-hrs (142.3-min), as the eclipse to within uncertainties. The spectral energy distribution and luminosity is found to be comparable to that of AM Herculis. Pre-eclipse dips in the light curve show evidence for stream accretion. We derive the following tentative binary and stellar parameters assuming a helium composition white dwarf and a companion mass of 0.2 M$_{odot}$: inclination i = 74.68$^{o}$ ${pm}$ 0.03$^{o}$, semi-major axis a = 0.942 ${pm}$ 0.024 R$_{odot}$, and masses and radii of the white dwarf and companion respectively: M$_{1}$ = 0.948 $^{+0.006}_{-0.012}$ M$_{odot}$, R$_{1}$ = 0.00830 $^{+0.00012}_{-0.00006}$ R$_{odot}$, R$_{2}$ = 0.249 ${pm}$ 0.002 R$_{odot}$. As a relatively bright (V $sim$ 17-19 mag), eclipsing, period-gap polar, CRTS J0350+3232 will remain an important laboratory for the study of accretion and angular momentum evolution in polars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا