ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanolaser in the selfgenerated nonequilibrium environment: quantum fluctuations and entanglement

77   0   0.0 ( 0 )
 نشر من قبل Nikolai M. Chtchelkatchev
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the dynamics of the spaser-based nanolaser in the strong incoherent pumping regime in the quantum limit when the photon number is the order of unity. We consider the situation where the newly irradiated photon finds itself in the cloud of earlier irradiated photons that are not thermalized. As the result the entanglement of nanoparticle with quantum dot degrees of freedom in the nanolaser and the lasing intensity increases several times. In fact the nonthermal bath effectively makes the nanolaser more quantum and master equation for the nanolaser density matrix nonlinear and selfconsistent.

قيم البحث

اقرأ أيضاً

We analyze the dynamics of a nanomechanical oscillator coupled to an electrical tunnel junction with an arbitrary voltage applied to the junction and arbitrary temperature of electrons in leads. We obtain the explicit expressions for the fluctuations of oscillator position, its damping/decoherence rate, and the current through the structure. It is shown that quantum heating of the oscillator results in nonlinearity of the current-voltage characteristics. The effects of mechanical vacuum fluctuations are also discussed.
94 - C. Schinabeck , M. Thoss 2019
We present a hierarchical quantum master equation (HQME) approach, which allows the numerically exact evaluation of higher-order current cumulants in the framework of full counting statistics for nonequilibrium charge transport in nanosystems. The no vel methodology is exemplarily applied to a model of vibrationally coupled electron transport in a molecular nanojunction. We investigate the influence of cotunneling on avalanche-like transport, in particular in the nonresonant transport regime, where we find that inelastic cotunneling acts as trigger process for resonant avalanches. In this regime, we also demonstrate that the correction to the elastic noise upon opening of the inelastic transport channel is strongly affected by the nonequilibrium excitation of the vibration as well as the polaron shift.
330 - H. A. M. Leymann 2013
We investigate correlations between orthogonally polarized cavity modes of a bimodal micropillar laser with a single layer of self-assembled quantum dots in the active region. While one emission mode of the microlaser demonstrates a characteristic s- shaped input-output curve, the output intensity of the second mode saturates and even decreases with increasing injection current above threshold. Measuring the photon auto-correlation function g^{(2)}(tau) of the light emission confirms the onset of lasing in the first mode with g^{(2)}(0) approaching unity above threshold. In contrast, strong photon bunching associated with super-thermal values of g^{(2)}(0) is detected for the other mode for currents above threshold. This behavior is attributed to gain competition of the two modes induced by the common gain material, which is confirmed by photon crosscorrelation measurements revealing a clear anti-correlation between emission events of the two modes. The experimental studies are in excellent qualitative agreement with theoretical studies based on a microscopic semiconductor theory, which we extend to the case of two modes interacting with the common gain medium. Moreover, we treat the problem by an extended birth-death model for two interacting modes, which reveals, that the photon probability distribution of each mode has a double peak structure, indicating switching behavior of the modes for the pump rates around threshold.
In this paper, a possible way to achieve lasing from THz to extreme UV domain due to stimulated scattering of graphene plasmons on the free electrons is considered. The analytical-quantitative description of the proposed FEL scheme is based on the se lf-consistent set of the Maxwell--Vlasov equations. We study the downconversion as well as the upconversion. It is shown that the coherent downconversion of infrared radiation to THz one can be achieved using a source of very non-relativistic electrons at the resonant coupling with the graphene plasmons. Due to the strongly confined graphene plasmons, the upconversion of mid-infrared to extreme UV radiation can be achieved with the mildly relativistic electron beams. The latter is a promising mechanism for the tabletop short-wavelength free electron nanolaser.
By nonperturbatively solving the nonequilibrium Anderson two-impurity model with the hierarchical equations of motion approach, we report a robust ferromagnetic (FM) phase in series-coupled double quantum dots, which can suppress the antiferromagneti c (AFM) phase and dominate the phase diagram at finite bias and detuning energy in the strongly correlated limit. The FM exchange interaction origins from the passive parallel spin arrangement caused by the Pauli exclusion principle during the electrons transport. At very low temperature, the Kondo screening of the magnetic moment in the FM phase induces some nonequilibrium Kondo effects in magnetic susceptibility, spectral functions and current. In the weakly correlated limit, the AFM phase is found still stable, therefore, a magnetic-field-free internal control of spin states can be expected through the continuous FM--AFM phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا