ﻻ يوجد ملخص باللغة العربية
Although fluorescence is the prevailing labeling technique in biosensing applications, sensitivity improvement is still a striving challenge. We show that coating standard microscope slides with nanoroughened silver films provides a high fluorescence signal enhancement due to plasmonic interactions. As a proof of concept, we applied these films with tailored plasmonic properties to DNA microarrays. Using common optical scanning devices, we achieved signal amplifications by more than 40-fold.
Fast, room temperature imaging at THz and sub-THz frequencies is an interesting feature which could unleash the full potential of plenty applications in security, healthcare and industrial production. In this Letter we introduce micromechanical bolom
Conventional microscope objective lenses are diffraction limited, which means that they cannot resolve features smaller than half the illumination wavelength. Under white light illumination, such resolution limit is about 250-300 nm for an ordinary m
A microstructured graphitic 4x4 multielectrode array was embedded in a single crystal diamond substrate (4x4 {uG-SCD MEA) for real-time monitoring of exocytotic events from cultured chromaffin cells and adrenal slices. The current approach relies on
A spectrometer for resonant inelastic X-ray scattering (RIXS) is proposed where imaging and dispersion actions in two orthogonal planes are combined to deliver full two-dimensional map of RIXS intensity in one shot with parallel detection in incoming
We demonstrate niobium nitride based superconducting single-photon detectors sensitive in the spectral range 452 nm - 2300 nm. The system performance was tested in a real-life experiment with correlated photons generated by means of spontaneous param