ﻻ يوجد ملخص باللغة العربية
We present new formulae for the matrix elements of one-body and two-body physical operators in compact forms, which are applicable to arbitrary Hartree-Fock-Bogoliubov wave functions, including those for multi-quasiparticle excitations. The test calculations show that our formulae may substantially accelerate the process of symmetry restoration when applied to the heavy nuclear system.
Precision tests of the Standard Model and searches for beyond the Standard Model physics often require nuclear structure input. There has been a tremendous progress in the development of nuclear ab initio techniques capable of providing accurate nucl
In this talk, we present a framework for studying structural information of resonances and bound states coupling to two-hadron scattering states. This makes use of a recently proposed finite-volume formalism to determine a class of observables that a
State-of-the-art multi-reference energy density functional calculations require the computation of norm overlaps between different Bogoliubov quasiparticle many-body states. It is only recently that the efficient and unambiguous calculation of such n
We examine the leading effects of two-body weak currents from chiral effective field theory on the matrix elements governing neutrinoless double-beta decay. In the closure approximation these effects are generated by the product of a one-body current
We study one- and two-body visibility measures under an optimization of common, i.e. global evolutions of a two-body system, and identify two different visibilities of two-body correlators, both behaving complementary to the usual onebody interferenc