ترغب بنشر مسار تعليمي؟ اضغط هنا

Flux avalanches in Nb superconducting shifted strip arrays

83   0   0.0 ( 0 )
 نشر من قبل Yuji Tsuchiya
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Flux penetrations into three-dimensional Nb superconducting strip arrays, where two layers of strip arrays are stacked by shifting a half period, are studied using a magneto-optical imaging method. Flux avalanches are observed when the overlap between the top and bottom layers is large even if the width of each strip is well below the threshold value. In addition, anomalous linear avalanches perpendicular to the strip are observed in the shifted strip array when the overlap is very large and the thickness of the superconductor is greater than the penetration depth. We discuss possible origins for the flux avalanches, including linear ones, by considering flux penetration calculated by the Campbell method assuming the Bean model.

قيم البحث

اقرأ أيضاً

The flux penetration near a semicircular indentation at the edge of a thin superconducting strip placed in a transverse magnetic field is investigated. The flux front distortion due to the indentation is calculated numerically by solving the Maxwell equations with a highly nonlinear $E(j)$ law. We find that the excess penetration, $Delta$, can be significantly ($sim$ 50%) larger than the indentation radius $r_0$, in contrast to a bulk supercondutor in the critical state where $Delta=r_0$. It is also shown that the flux creep tends to smoothen the flux front, i.e. reduce $Delta$. The results are in very good agreement with magneto-optical studies of flux penetration into an YBa$_2$Cu$_3$O$_x$ film having an edge defect.
We present numerical and analytical studies of coupled nonlinear Maxwell and thermal diffusion equations which describe nonisothermal dendritic flux penetration in superconducting films. We show that spontaneous branching of propagating flux filament s occurs due to nonlocal magnetic flux diffusion and positive feedback between flux motion and Joule heat generation. The branching is triggered by a thermomagnetic edge instability which causes stratification of the critical state. The resulting distribution of magnetic microavalanches depends on a spatial distribution of defects. Our results are in good agreement with experiments performed on Nb films.
We study experimentally the critical depinning current Ic versus applied magnetic field B in Nb thin films which contain 2D arrays of circular antidots placed on the nodes of quasiperiodic (QP) fivefold Penrose lattices. Close to the transition tempe rature Tc we observe matching of the vortex lattice with the QP pinning array, confirming essential features in the Ic(B) patterns as predicted by Misko et al. [Phys. Rev. Lett, vol.95, 177007 (2005)]. We find a significant enhancement in Ic(B) for QP pinning arrays in comparison to Ic in samples with randomly distributed antidots or no antidots.
The dynamics of magnetic field penetration into thin-walled superconducting niobium cylinders is experimentally investigated. It is shown that magnetic field penetrates through the wall of a cylinder in a series of giant jumps with amplitude 10 - 20 Oe and duration of a few $mu$s. The jumps take place when the total current in the wall, not the current density, exceeds some critical value. In addition there are small jumps and/or smooth penetration, and their contribution can reach 20% of the total penetrating flux. It is demonstrated that the magnetic field inside the cylinder exhibits several oscillations. The number of giant jumps reduces with temperature.
273 - S. K. He , W. J. Zhang , H. F. Liu 2011
We present transport measurement results on superconducting Nb films with diluted triangular arrays (honeycomb and kagom{e}) of holes. The patterned films have large disk-shaped interstitial regions even when the edge-to-edge separations between near est neighboring holes are comparable to the coherence length. Changes in the field interval of two consecutive minima in the field dependent resistance $R(H)$ curves are observed. In the low field region, fine structures in the $R(H)$ and $T_c(H)$ curves are identified in both arrays. Comparison of experimental data with calculation results shows that these structures observed in honeycomb and kagom{e} hole arrays resemble those in wire networks with triangular and $T_3$ symmetries, respectively. Our findings suggest that even in these specified periodic hole arrays with very large interstitial regions, the low field fine structures are determined by the connectivity of the arrays
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا