ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable neutron star free precession in Hercules X-1 from evolution of RXTE X-ray pulse profiles with phase of the 35-day cycle

323   0   0.0 ( 0 )
 نشر من قبل K. A. Postnov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. Postnov




اسأل ChatGPT حول البحث

Accretion of matter onto the surface of a freely precessing NS with a complex non-dipole magnetic field can explain the change of X-ray pulse profiles of Her X-1 observed by RXTE with the phase of the 35-day cycle. We demonstrate this using all available measurements of X-ray pulse profiles in the 9-13 keV energy range obtained with the RXTE/PCA. The measured profiles guided the elaboration of a geometrical model and the definition of locations of emitting poles, arcs, and spots on the NS surface which satisfactorily reproduce the observed pulse profiles and their dependence on free precession phase. We have found that the observed trend of the times of the 35-day turn-ons on the O-C diagram, which can be approximated by a collection of consecutive linear segments around the mean value, can be described by our model by assuming a variable free precession period, with a fractional period change of about a few percent. We propose that the 2.5% changes in the free precession period that occur on time scales of several to tens of 35-day cycles can be related to wandering of the principal inertia axis of the NS body due to variations in the patterns of accretion onto the NS surface. The closeness of periods of the disk precession and the NS free precession can be explained by the presence of a synchronization mechanism in the system, which modulates the dynamical interaction of the gas streams and the accretion disk with the NS free precession period.

قيم البحث

اقرأ أيضاً

Regular variations of the pulse period of Her X-1 with X-ray flux observed by Fermi-GBM are examined. We argue that these regular variations result from the free precession of the neutron star in Her X-1.
A number of studies have revealed variability from neutron star low-mass X-ray binaries during quiescence. Such variability is not well characterised, or understood, but may be a common property that has been missed due to lack of multiple observatio ns. One such source where variability has been observed is Aql X-1. Here, we analyse 14 Chandra and XMM-Newton observations of Aql X-1 in quiescence, covering a period of approximately 2 years. There is clear variability between the epochs, with the most striking feature being a flare-like increase in the flux by a factor of 5. Spectral fitting is inconclusive as to whether the power-law and/or thermal component is variable. We suggest that the variability and flare-like behaviour during quiescence is due to accretion at low rates which might reach the neutron star surface.
The X-ray binary Her X-1 consists of an accreting neutron star and the optical component HZ Her. The 35-day X-ray superorbital variability of this system is known since its discovery in 1972 by the Uhuru satellite and is believed to be caused by forc ed precession of a warped accretion disk tilted to the orbital plane. We argue that the observed features of the 35-day optical variability of HZ Her can be explained by free precession of the neutron star with a period close to that of the forced disk. The model parameters include a) the X-ray luminosity of the neutron star; b) the optical flux from the accretion disk; c) the tilt of the inner and outer edges of the accretion disk. A possible synchronization mechanism based on the coupling between the neutron star free precession and the dynamical action of non-stationary gas streams is discussed.
We analyze the latest emph{Suzaku} observation of the bright neutron star low-mass X-ray binary Serpens X-1 taken in 2013 October and 2014 April. The observation was taken using the burst mode and only suffered mild pile-up effects. A broad iron line is clearly detected in the X-ray spectrum. We test different models and find that the iron line is asymmetric and best interpreted by relativistic reflection. The relativistically broadened iron line is generally believed to originate from the innermost regions of the accretion disk, where strong gravity causes a series of special and general relativistic effects. The iron line profile indicates an inner radius of $sim8$ $R_{rm G}$, which gives an upper limit on the size of the neutron star. The asymmetric iron line has been observed in a number of previous observations, which gives several inner radius measurements at different flux states. We find that the inner radius of Serpens X-1 does not evolve significantly over the range of $L/L_{rm Edd}sim0.4-0.6$, and the lack of flux dependence of the inner radius implies that the accretion disk may be truncated outside the innermost stable circular orbit by the boundary layer rather than the stellar magnetic field.
We have found and analysed 16 multi-peaked type-I bursts from the neutron-star low mass X-ray binary 4U 1636$-$53 with the Rossi X-ray Timing Explorer (RXTE). One of the bursts is a rare quadruple-peaked burst which was not previously reported. All 1 6 bursts show a multi-peaked structure not only in the X-ray light curves but also in the bolometric light curves. Most of the multi-peaked bursts appear in observations during the transition from the hard to the soft state in the colour-colour diagram. We find an anti-correlation between the second peak flux and the separation time between two peaks. We also find that in the double-peaked bursts the peak-flux ratio and the temperature of the thermal component in the pre-burst spectra are correlated. This indicates that the double-peaked structure in the light curve of the bursts may be affected by enhanced accretion rate in the disc, or increased temperature of the neutron star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا