ترغب بنشر مسار تعليمي؟ اضغط هنا

Proper motions of young stars in Chamaeleon. II. New kinematical candidate members of Chamaeleon I and II

149   0   0.0 ( 0 )
 نشر من قبل Bel\\'en L\\'opez Mart\\'i
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Chamaeleon star-forming region has been extensively studied in the last decades. However, most studies have been confined to the densest parts of the clouds. In a previous paper, we analysed the kinematical properties of the spectroscopically confirmed population of the Chamaeleon I and II clouds. We now report on a search for new kinematical candidate members to the Chamaeleon I and II moving groups using available information from public databases and catalogues. Our candidates were initially selected in an area of 3 deg around each cloud on the basis of proper motions and colours from the UCAC4 Catalog. The SEDs of the objects were constructed using photometry retrieved from the Virtual Observatory and other resources, and fitted to models of stellar photospheres to derive effective temperatures, gravity values, and luminosities. Masses and ages were estimated by comparison with theoretical evolutionary tracks in a Hertzprung-Russell diagram. We have identified 51 and 14 candidate members to the Chamaeleon I and II moving groups, respectively, of which 17 and 1, respectively, are classified as probable young stars (ages < 20 Myr) according to our analysis. Another object in Chamaeleon I located slightly above the 1 Myr isochrone is classified as a possible young star. All these objects are diskless stars with masses in the range 0.3M-1.4MSun, and ages consistent with those reported for the corresponding confirmed members. They tend to be located at the boundaries of or outside the dark clouds, preferably to the north-east and south-east in the case of Chamaeleon I, and to the north-east in the case of Chamaeleon II. We conclude that the kinematical population of Chamaeleon I and II could be larger and spread over a larger area of the sky than suggested by previous studies.



قيم البحث

اقرأ أيضاً

(abridged) We want to provide further evidence of the origin of the proposed stellar members of Chamaeleon and to identify interlopers from the foreground epsilon Cha and eta Cha associations. To this aim, we compile lists of spectroscopically confir med members of Chamaeleon I and II, epsilon Cha and eta Cha, and of background objects in the same line of sight. Using Virtual Observatory tools, we cross-match these lists with the UCAC3 catalogue to get the proper motions of the objects. In the vector point diagram, we identify the different moving groups, and use this information to study the membership of proposed candidate members of the associations from the literature. For those objects with available radial velocities, we compute their Galactic space velocities. We look for correlations between the known properties of the objects and their proper motions. The members of the dark clouds exhibit clearly different proper motions from those of the foreground associations and of the background stars. The data suggest that Chamaeleon II could have different dynamical properties from Chamaeleon I. Although the two foreground clusters epsilon and eta Chamaeleontis constitute two different proper motion groups, they have similar spatial motions, which are different from the spatial motion of Chamaeleon I. On the other hand, the space motions of the Chamaeleon II stars look more similar to those of the foreground clusters than to the Chamaeleon I stars, but the numbers are low. Hence, with the available data it is unclear to what extent the stellar populations in both clouds are physically connected to each other. We find no correlations between the proper motions and the properties of the objects in either of the clouds.
213 - K. Kubiak , K. Muv{z}ic , I. Sousa 2021
The goal of this paper is to increase the membership list of the Chamaeleon star forming region and the $epsilon$ Cha moving group, in particular for low-mass stars and substellar objects. We extended the search region significantly beyond the dark c louds. Our sample has been selected based on proper motions and colours obtained from Gaia and 2MASS. We present and discuss the optical spectroscopic follow-up of 18 low-mass stellar objects in Cha I and $epsilon$ Cha. We characterize the properties of objects by deriving their physical parameters, both from spectroscopy and photometry. We add three more low-mass members to the list of Cha I, and increase the census of known $epsilon$ Cha members by more than 40%, confirming spectroscopically 13 new members and relying on X-ray emission as youth indicator for 2 more. In most cases the best-fitting spectral template is from objects in the TW Hya association, indicating that $epsilon$ Cha has a similar age. The first estimate of the slope of the initial mass function in $epsilon$ Cha down to the sub-stellar regime is consistent with that of other young clusters. We estimate our IMF to be complete down to $approx 0.03$M$_{odot}$. The IMF can be represented by two power laws: for M $<$ 0.5 M$_{odot}$ $alpha = 0.42 pm 0.11$ and for M $>$ 0.5 M$_{odot}$ $alpha = 1.44 pm 0.12$. We find similarities between $epsilon$ Cha and the southernmost part of Lower Centaurus Crux (LCC A0), both lying at similar distances and sharing the same proper motions. This suggests that $epsilon$ Cha and LCC A0 may have been born during the same star formation event
Context: Chamaeleon is the southernmost low-mass star-forming complex within 200 pc from the Sun. Its stellar population has been extensively studied in the past, but the current census of the stellar content is not complete yet and deserves further investigation. Aims: We take advantage of the second data release of the textit{Gaia} space mission to expand the census of stars in Chamaeleon and to revisit the properties of the stellar populations associated to the Chamaeleon I (Cha I) and Chamaeleon II (Cha II) dark clouds. Methods: We perform a membership analysis of the sources in the textit{Gaia} catalogue over a field of 100 deg$^{2}$ encompassing the Chamaeleon clouds, and use this new census of cluster members to investigate the 6D structure of the complex. Results: We identify 188 and 41 high-probability members of the stellar populations in Cha I and Cha II, respectively, including 19 and 7 new members. Our sample covers the magnitude range from $G=6$ to $G=20$ mag in Cha I, and from $G=12$ to $G=18$ mag in Cha II. We confirm that the northern and southern subgroups of Cha I are located at different distances ($191.4^{+0.8}_{-0.8}$ pc and $186.7^{+1.0}_{-1.0}$ pc), but they exhibit the same space motion within the reported uncertainties. Cha II is located at a distance of $197.5^{+1.0}_{-0.9}$ pc and exhibits a space motion that is consistent with Cha I within the admittedly large uncertainties on the spatial velocities of the stars that come from radial velocity data. The median age of the stars derived from the Hertzsprung-Russell diagram (HRD) and stellar models is about 1-2 Myr, suggesting that they are somewhat younger than previously thought. We do not detect significant age differences between the Chamaeleon subgroups, but we show that Cha II exhibits a higher fraction of disc-bearing stars compared to Cha I.
We discuss the results of the optical spectroscopic follow-up of pre-main sequence (PMS) objects and candidates selected in the Chamaeleon II dark cloud based on data from the Spitzer Legacy survey From Molecular Cores to Planet Forming Disks (c2d) a nd from previous surveys. Our sample includes both objects with infrared excess selected according to c2d criteria and referred to as Young Stellar Objects and other cloud members and candidates selected from complementary optical and near-infrared data. We characterize the sample of objects by deriving their physical parameters. The vast majority of objects have masses < 1 solar mass and ages < 6 Myr. Several of the PMS objects and candidates lie very close to or below the Hydrogen-burning limit. A first estimate of the slope of the Initial Mass Function in Cha II is consistent with that of other T associations. The star formation efficiency in the cloud (1-4%) is consistent with our own estimates for Taurus and Lupus, but significantly lower than for Cha I. This might mean that different star-formation activities in the Chamaeleon clouds may reflect a different history of star formation. We also find that the Cha II cloud is turning some 8 solar masses into stars every Myr, which is less than the star formation rate in the other c2d clouds. However, the star formation rate is not steady and evidence is found that the star formation in Cha II might have occurred very rapidly. The H_alpha emission of the Cha II PMS objects, as well as possible correlations between their stellar and disk properties, are also investigated.
175 - P. Manoj , K. H. Kim , E. Furlan 2011
We present 5 to 36 micron mid-infrared spectra of 82 young stars in the ~2 Myr old Chamaeleon I star-forming region, obtained with the Spitzer Infrared Spectrograph (IRS). We have classified these objects into various evolutionary classes based on th eir spectral energy distributions and the spectral features seen in the IRS spectra. We have analyzed the mid-IR spectra of Class II objects in Chamaeleon I in detail, in order to study the vertical and radial structure of the protoplanetary disks surrounding these stars. We find evidence for substantial dust settling in most protoplanetary disks in Chamaeleon I. We have identified several disks with altered radial structures in Chamaeleon I, among them transitional disk candidates which have holes or gaps in their disks. Analysis of the silicate emission features in the IRS spectra of Class II objects in Chamaeleon I shows that the dust grains in these disks have undergone significant processing (grain growth and crystallization). However, disks with radial holes/gaps appear to have relatively unprocessed grains. We further find the crystalline dust content in the inner (< 1-2 AU) and the intermediate (< 10 AU) regions of the protoplanetary disks to be tightly correlated. We also investigate the effects of accretion and stellar multiplicity on the disk structure and dust properties. Finally, we compare the observed properties of protoplanetary disks in Cha I with those in slightly younger Taurus and Ophiuchus regions and discuss the effects of disk evolution in the first 1-2 Myr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا