ترغب بنشر مسار تعليمي؟ اضغط هنا

TeV-PeV neutrinos over the atmospheric background: originating from two groups of sources?

383   0   0.0 ( 0 )
 نشر من قبل Hao-Ning He
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In addition to the two ~1 PeV neutrinos, the IceCube Collaboration recently reported a detection of 26 neutrino candidates at energies from 30 TeV to 250 TeV, implying a confidence level of 4.3sigma over the atmospheric background. We suggest that these TeV-PeV non-atmospheric neutrinos may originate from two groups of sources, motivated by the non-detection of neutrinos in the energy range 250 TeV- 1 PeV in current data. If intrinsic, the non-detection of 250 TeV-1 PeV neutrinos disfavors the single power-law spectrum model for the TeV-PeV non-atmospheric neutrinos at a confidence level of ~ 2sigma. We then interpret the current neutrino data with a two-component spectrum model. One has a flat spectrum with a cutoff at the energy ~ 250 TeV and the other has a sharp peak at ~1 PeV. The former is likely via pp collision while the latter may be generated by the photomeson interaction.


قيم البحث

اقرأ أيضاً

The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh-energy cosmic rays. Starting f rom rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ~10^18 eV, where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.
Recently we have shown that high-energy neutrinos above 200 TeV detected by IceCube are produced within several parsecs in the central regions of radio-bright blazars, that is active galactic nuclei with jets pointing towards us. To independently tes t this result and extend the analysis to a wider energy range, we use public data for all neutrino energies from seven years of IceCube observations. The IceCube point-source likelihood map is analyzed against the positions of blazars from a statistically complete sample selected by their compact radio flux density. The latter analysis delivers a 3.0 sigma significance with the combined post-trial significance of both studies being 4.1 sigma. The correlation is driven by a large number of blazars. Together with fainter but physically similar sources not included in the sample, they may explain the entire IceCube astrophysical neutrino flux as derived from muon-track analyses. The neutrinos can be produced in interactions of relativistic protons with X-ray self-Compton photons in parsec-scale blazar jets.
It has been speculated that Lorentz-invariance violation (LIV) might be generated by quantum-gravity (QG) effects. As a consequence, particles may not travel at the universal speed of light. In particular, superluminal extragalactic neutrinos would r apidly lose energy via the bremssthralung of electron-positron pairs (nu -> nu e+ e-), damping their initial energy into electromagnetic cascades, a figure constrained by Fermi-LAT data. We show that the two cascade neutrino events with energies around 1 PeV recently detected by IceCube -if attributed to extragalactic diffuse events, as it appears likely- can place the strongest bound on LIV in the neutrino sector, namely delta =(v^2-1) < O(10^(-18)), corresponding to a QG scale M_QG ~ 10^5 M_Pl (M_QG >~ 10^(-4) M_Pl) for a linear (quadratic) LIV, at least for models inducing superluminal neutrino effects (delta > 0).
394 - Jesus Zavala 2014
The IceCube Neutrino Observatory has observed highly energetic neutrinos in excess of the expected atmospheric neutrino background. It is intriguing to consider the possibility that such events are probing physics beyond the standard model. In this c ontext, $mathcal{O}$(PeV) dark matter particles decaying to neutrinos have been considered while dark matter annihilation has been dismissed invoking the unitarity bound as a limiting factor. However, the latter claim was done ignoring the contribution from dark matter substructure, which for PeV Cold Dark Matter would extend down to a free streaming mass of $mathcal{O}$($10^{-18}$M$_odot$). Since the unitarity bound is less stringent at low velocities, ($sigma_{rm ann}$v)$leq4pi/m_chi^2v$, then, it is possible that these cold and dense subhalos would contribute dominantly to a dark-matter-induced neutrino flux and easily account for the events observed by IceCube. A Sommerfeld-enhanced dark matter model can naturally support such scenario. Interestingly, the spatial distribution of the events shows features that would be expected in a dark matter interpretation. Although not conclusive, 9 of the 37 events appear to be clustered around a region near the Galactic Center while 6 others spatially coincide, within the reported angular errors, with 5 of 26 Milky Way satellites. However, a simple estimate of the probability of the latter occurring by chance is $sim35%$. More events are needed to statistically test this hypothesis. PeV dark matter particles are massive enough that their abundance as standard thermal relics would overclose the Universe. This issue can be solved in alternative scenarios, for instance if the decay of new massive unstable particles generates significant entropy reheating the Universe to a slightly lower temperature than the freeze-out temperature, $T_{rm RH} lesssim T_{rm f}sim4times10^4$~GeV.
The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A search for $gtrsim 100$~TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCubes instrumented volume between 1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to 10 TeV. From these data we derive new constraints on the diffuse astrophysical neutrino spectrum, $Phi_{ u} = 2.06^{+0.4}_{-0.3} times 10^{-18} left({E_{ u}}/{10^5 ,, rm{GeV}} right)^{-2.46 pm 0.12} {rm {GeV^{-1} , cm^{-2} , sr^{-1} , s^{-1}} } $, as well as the strongest upper limit yet on the flux of neutrinos from charmed-meson decay in the atmosphere, 1.52 times the benchmark theoretical prediction used in previous IceCube results at 90% confidence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا