ترغب بنشر مسار تعليمي؟ اضغط هنا

80hk Momentum Separation with Bloch Oscillations in an Optically Guided Atom Interferometer

70   0   0.0 ( 0 )
 نشر من قبل Gordon McDonald
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate phase sensitivity in a horizontally guided, acceleration-sensitive atom interferometer with a momentum separation of 80hk between its arms. A fringe visibility of 7% is observed. Our coherent pulse sequence accelerates the cold cloud in an optical waveguide, an inherently scalable route to large momentum separation and high sensitivity. We maintain coherence at high momentum separation due to both the transverse confinement provided by the guide, and our use of optical delta-kick cooling on our cold-atom cloud. We also construct a horizontal interferometric gradiometer to measure the longitudinal curvature of our optical waveguide.

قيم البحث

اقرأ أيضاً

Bloch oscillations are a hallmark of coherent wave dynamics in periodic potentials. They occur as the response of quantum mechanical particles in a lattice if a weak force is applied. In optical lattices with their perfect periodic structure they can be readily observed and employed as a quantum mechanical force sensor, for example, for precise measurements of the gravitational acceleration. However, the destructive character of the measurement process in previous experimental implementations poses serious limitations for the precision of such measurements. In this article we show that the use of an optical cavity operating in the regime of strong cooperative coupling allows one to directly monitor Bloch oscillations of a cloud of cold atoms in the light leaking out of the cavity. Hence, with a single atomic sample the Bloch oscillation dynamics can be mapped out, while in previous experiments, each data point required the preparation of a new atom cloud. The use of a cavity-based monitor should greatly improve the precision of Bloch oscillation measurements for metrological purposes.
We report the direct observation and characterization of position-space Bloch oscillations using an ultracold gas in a tilted optical lattice. While Bloch oscillations in momentum space are a common feature of optical lattice experiments, the real-sp ace center-of-mass dynamics are typically too small to resolve. Tuning into the regime of rapid tunneling and weak force, we observe real-space Bloch oscillation amplitudes of hundreds of lattice sites, in both ground and excited bands. We demonstrate two unique capabilities enabled by tracking of Bloch dynamics in position space: measurement of the full position-momentum phase-space evolution during a Bloch cycle, and direct imaging of the lattice band structure. These techniques, along with the ability to exert long-distance coherent control of quantum gases without modulation, may open up new possibilities for quantum control and metrology.
Exponential decay laws describe systems ranging from unstable nuclei to fluorescent molecules, in which the probability of jumping to a lower-energy state in any given time interval is static and history-independent. These decays, involving only a me tastable state and fluctuations of the quantum vacuum, are the most fundamental nonequilibrium process, and provide a microscopic model for the origins of irreversibility. Despite the fact that the apparently universal exponential decay law has been precisely tested in a variety of physical systems, it is a surprising truth that quantum mechanics requires that spontaneous decay processes have non-exponential time dependence at both very short and very long times. Cold-atom experiments both classic and recent have proven to be powerful probes of fundamental decay processes; in this paper, we propose the use of Bose condensates in Floquet-Bloch bands as a probe of long-time non-exponential decay in single isolated emitters. We identify a range of parameters that should enable observation of long-time deviations, and experimentally demonstrate a key element of the scheme: tunable decay between quasienergy bands in a driven optical lattice.
86 - Bryce Gadway 2016
We present a simple experimental scheme, based on standard atom optics techniques, to design highly versatile model systems for the study of single particle quantum transport phenomena. The scheme is based on a discrete set of free-particle momentum states that are coupled via momentum-changing two-photon Bragg transitions, driven by pairs of interfering laser beams. In the effective lattice models that are accessible, this scheme allows for single-site detection, as well as site-resolved and dynamical control over all system parameters. We discuss two possible implementations, based on state-preserving Bragg transitions and on state-changing Raman transitions, which respectively allow for the study of nearly arbitrary single particle Abelian U(1) and non-Abelian U(2) lattice models.
We demonstrate a source for correlated pairs of atoms characterized by two opposite momenta and two spatial modes forming a Bell state only involving external degrees of freedom. We characterize the state of the emitted atom beams by observing strong number squeezing up to -10 dB in the correlated two-particle modes of emission. We furthermore demonstrate genuine two-particle interference in the normalized second-order correlation function $g^{(2)}$ relative to the emitted atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا