ﻻ يوجد ملخص باللغة العربية
We study the systematic bias introduced when selecting the spectroscopic redshifts of brighter cluster galaxies to estimate the velocity dispersion of galaxy clusters from both simulated and observational galaxy catalogues. We select clusters with Ngal > 50 at five low redshift snapshots from a semi-analytic model galaxy catalogue, and from a catalogue of SDSS DR8 groups and clusters across the redshift range 0.021<z<0.098. We employ various selection techniques to explore whether the velocity dispersion bias is simply due to a lack of dynamical information or is the result of an underlying physical process occurring in the cluster, for example, dynamical friction. The velocity dispersions and stacked particle velocity distributions of the parent dark matter (DM) halos are compared to the corresponding cluster dispersions and galaxy velocity distribution. We find a clear bias between the halo and the semi-analytic galaxy cluster velocity dispersion on the order of sigma gal / sigma DM = 0.87-0.95 and a distinct difference in the stacked galaxy and DM particle velocity distribution. We identify a systematic underestimation of the velocity dispersions when imposing increasing absolute I-band magnitude limits. This underestimation is enhanced when using only the brighter cluster members for dynamical analysis on the order of 5-35%, indicating that dynamical friction is a serious source of bias when using galaxy velocities as tracers of the underlying gravitational potential. In contrast to the literature we find that the resulting bias is not only halo mass-dependent but that the nature of the dependence changes according to the galaxy selection strategy. We make a recommendation that, in the realistic case of limited availability of spectral observations, a strictly magnitude-limited sample should be avoided to ensure an unbiased estimate of the velocity dispersion.
We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zeldovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of $61$ spectroscopic cluster redshifts, and $48$ velocity dispersions each
If the formation of central galaxies in dark matter haloes traces the assembly history of their host haloes, in haloes of fixed mass, central galaxy clustering may show dependence on properties indicating their formation history. Such a galaxy assemb
We present Gemini and Keck spectroscopic redshifts and velocity dispersions for twenty clusters detected via the Sunyaev-Zeldovich (SZ) effect by the Planck space mission, with estimated masses in the range $2.3 times 10^{14} M_{odot} < M < 9.4 times
We present a new approach for quantifying the abundance of galaxy clusters and constraining cosmological parameters using dynamical measurements. In the standard method, galaxy line-of-sight (LOS) velocities, $v$, or velocity dispersions are used to
We measure the velocity dispersions of clusters of galaxies selected by the redMaPPer algorithm in the first three years of data from the Dark Energy Survey (DES), allowing us to probe cluster selection and richness estimation, $lambda$, in light of