ترغب بنشر مسار تعليمي؟ اضغط هنا

Comments on An Update of the HLS Estimate of the Muon g-2by M.Benayoun {it et al.}, arXiv:1210.7184v3

61   0   0.0 ( 0 )
 نشر من قبل Michel Davier
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent paper cite{benayoun} M.Benayoun {it et al.} use a specific model to compare results on the existing data for the cross section of the process $e^+e^-rightarrow pi^+pi^-$ and state conclusions about the inconsistency of the BABAR results with those from the other experiments. We show that a direct model-independent comparison of the data at hand contradicts this claim. Clear discrepancies with the results of Ref. cite{benayoun} are pointed out. As a consequence we do not believe that the lower value and the smaller uncertainty obtained for the prediction of the muon magnetic anomaly are reliable results.

قيم البحث

اقرأ أيضاً

The successful precision measurement of the rate of muon capture on a proton by the MuCap Collaboration allows for a stringent test of the current theoretical understanding of this process. Chiral perturbation theory, which is a low-energy effective field theory that preserves the symmetries and the pattern of symmetry breaking in the underlying theory of QCD, offers a systematic framework for describing $mu p$ capture and provides a basic test of QCD at the hadronic level. We describe how this effective theory with no free parameters reproduces the measured capture rate. A recent study has addressed new sources of uncertainties that were not considered in the previous works, and we review to what extent these uncertainties are now under control. Finally, the rationale for studying muon capture on the deuteron and some recent theoretical developments regarding this process are discussed.
The CLAS Collaboration provides a comment on the physics interpretation of the results presented in a paper published by M. Amaryan et al. regarding the possible observation of a narrow structure in the mass spectrum of a photoproduction experiment.
240 - Michel Davier 2016
Precise data on e^+e^- to hadrons have recently become available and are used to compute the lowest-order hadronic vacuum polarisation contribution to the muon magnetic anomaly through dispersion relations. This is the case for the dominant pi+ pi- c hannel, but the most significant progress comes from the near completion of the BABAR program of measuring exclusive processes below 2 GeV with the initial-state radiation method which allows an efficient coverage of a large range of energies.. In this paper we briefly review the data treatment, the achieved improvements, and the result obtained for the full Standard Model prediction of the muon magnetic anomaly. The value obtained, a_mu (had~LO)=(692.6 +- 3.3)x 10^{-10} is 20% more precise than our last estimate in 2010. It deviates from the direct experimental determination by (27.4 +- 7.6)x 10^{-10} (3.6 sigma). Perpectives for further improvement are discussed.
77 - Michel Davier 2003
A new evaluation of the hadronic vacuum polarization contribution to the muon magnetic moment is presented. We take into account the reanalysis of the low-energy ee annihilation cross section into hadrons by the CMD-2 Collaboration. The agreement bet ween ee and $tau$ spectral functions in the $pipi$ channel is found to be much improved. Nevertheless, significant discrepancies remain in the center-of-mass energy range between 0.85 and $1.0 {rm GeV}/c^2$.The deviations from the measurement at BNL are found to be $(22.1 pm 7.2 pm 3.5 pm 8.0)~10^{-10}$ (1.9 $sigma$) and $(7.4 pm 5.8 pm 3.5 pm 8.0)~10^{-10}$ (0.7 $sigma$) for the ee- and $tau$-based estimates, respectively, where the second error is from the nonhadronic contributions and the third one from the BNL measurement. Taking into account the $rho^- - rho^0$ mass splitting determined from the measured spectral functions increases the $tau$-based estimate and leads to a worse discrepancy between the two estimates.
In this comment, we discuss the mathematical formalism used in Boumali et al. (2020) which describes the superstatistical thermal properties of a one-dimensional Dirac oscillator. In particular, we point out the importance of maintaining the Legendre structure unaltered to ensure an accurate description of the thermodynamic observables when a Tsallis-like statistical description is assumed. Also, we remark that all the negative poles have to take into account to calculate the Gibbs--Boltzmann partition function. Our findings show that the divergences obtained by the authors in the Helmholtz free energy, which are propagated to the other thermal properties, are a consequence of an incomplete partition function. Moreover, we prove that the restrictions over the $q$-parameter are no needed if an appropriate partition function describes the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا