ﻻ يوجد ملخص باللغة العربية
We investigate Monte Carlo simulation strategies for determining the effective (depletion) potential between a pair of hard spheres immersed in a dense sea of much smaller hard spheres. Two routes to the depletion potential are considered. The first is based on estimates of the insertion probability of one big sphere in the presence of the other; we describe and compare three such methods. The second route exploits collective (cluster) updating to sample the depletion potential as a function of the separation of the big particles; we describe two such methods. For both routes we find that the sampling efficiency at high densities of small particles can be enhanced considerably by exploiting `geometrical shortcuts that focus the computational effort on a subset of small particles. All the methods we describe are readily extendable to particles interacting via arbitrary potentials.
We show how to generalize the Lattice Switch Monte Carlo method to calculate the phase diagram of a binary system. A global coordinate transformation is combined with a modification of particle diameters, enabling the multi-component system in questi
As first explained by the classic Asakura-Oosawa (AO) model, effective attractive forces between colloidal particles induced by depletion of nonadsorbing polymers can drive demixing of colloid-polymer mixtures into colloid-rich and colloid-poor phase
An approach to obtain the structural properties of additive binary hard-sphere mixtures is presented. Such an approach, which is a nontrivial generalization of the one recently used for monocomponent hard-sphere fluids [S. Pieprzyk, A. C. Branka, and
The structure of polydisperse hard sphere fluids, in the presence of a wall, is studied by the Rosenfeld density functional theory. Within this approach, the local excess free energy depends on only four combinations of the full set of density fields
We construct asymptotic arguments for the relative efficiency of rejection-free Monte Carlo (MC) methods compared to the standard MC method. We find that the efficiency is proportional to $exp{({const} beta)}$ in the Ising, $sqrt{beta}$ in the classi