ترغب بنشر مسار تعليمي؟ اضغط هنا

The Variable Stars from the OGLE-III Shallow Survey in the Large Magellanic Cloud

81   0   0.0 ( 0 )
 نشر من قبل Krzysztof Ulaczyk
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe variable stars found in the data collected during the OGLE-III Shallow Survey covering the I-band magnitude range from 9.7 mag to 14.5 mag. The main result is the extension of period--luminosity relations for Cepheids up to 134 days. We also detected 82 binary systems and 110 long-period variables not present in the main OGLE catalogs. Additionally 558 objects were selected as candidates for miscellaneous variables.

قيم البحث

اقرأ أيضاً

372 - Charles A. Kuehn 2013
This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediat e systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster.
The seventh part of the OGLE-III Catalog of Variable Stars (OIII-CVS) consists of 4630 classical Cepheids in the Small Magellanic Cloud (SMC). The sample includes 2626 fundamental-mode (F), 1644 first-overtone (1O), 83 second-overtone (2O), 59 double -mode F/1O, 215 double-mode 1O/2O, and three triple-mode classical Cepheids. For each object basic parameters, multi-epoch VI photometry collected within 8 or 13 years of observations, and finding charts are provided in the OGLE Internet archive. We present objects of particular interest: exceptionally numerous sample of single-mode second-overtone pulsators, five double Cepheids, two Cepheids with eclipsing variations superimposed on the pulsation light curves. At least 139 first-overtone Cepheids exhibit low-amplitude secondary variations with periods in the range 0.60-0.65 of the primary ones. These stars populate three distinct sequences in the Petersen diagram. The origin of this secondary modulation is still unknown. Contrary to the Large Magellanic Cloud (LMC) we found only a few candidates for anomalous Cepheids in the SMC. This fact may be a clue for the explanation of the origin of the anomalous Cepheids. The period and luminosity distributions of Cepheids in both Magellanic Clouds suggest that there are two or three populations of classical Cepheids in each of the galaxies. The main difference between the LMC and SMC lays in different numbers of Cepheids in each group. We fit the period-luminosity (PL) relations of SMC Cepheids and compare them with the LMC PL laws.
Context. Discovery of new variability classes in large surveys using multivariate statistics techniques such as clustering, relies heavily on the correct understanding of the distribution of known classes as point processes in parameter space. Aims. Our objective is to analyze the correspondence between the classical stellar variability types and the clusters found in the distribution of light curve parameters and colour indices of stars in the CoRoT exoplanet sample. The final aim is to help in the identification on new types of variability by first identifying the well known variables in the CoRoT sample. Methods. We apply unsupervised classification algorithms to identify clusters of variable stars from modes of the probability density distribution. We use reference variability databases (Hipparcos and OGLE) as a framework to calibrate the clustering methodology. Furthermore, we use the results from supervised classification methods to interpret the resulting clusters. Results.We interpret the clusters in the Hipparcos and OGLE LMC databases in terms of large-amplitude radial pulsators in the classical instability strip and of various types of eclipsing binaries. The Hipparcos data also provide clear distributions for low-amplitude nonradial pulsators. We show that the preselection of targets for the CoRoT exoplanet programme results in a completely different probability density landscape than the OGLE data, the interpretation of which involves mainly classes of low-amplitude variability in main-sequence stars. Our findings will be incorporated to improve the supervised classification used in the CoRoT catalogue production, once the existence of new classes or subtypes will be confirmed from complementary spectroscopic observations.
Symbiotic stars are long-orbital-period interacting-binaries characterized by extended emission over the whole electromagnetic range and by complex photometric and spectroscopic variability. In this paper, the first of a series, we present OGLE light curves of all the confirmed symbiotic stars in the Large Magellanic Cloud, with one exception. By careful visual inspection and combined time-series analysis techniques, we investigate for the first time in a systematic way the photometric properties of these astrophysical objects, trying in particular to distinguish the nature of the cool component (e.g., Semi-Regular Variable vs. OGLE Small-Amplitude Red Giant), to provide its first-order pulsational ephemerides, and to link all this information with the physical parameters of the binary system as a whole. Among the most interesting results, there is the discovery of a 20-year-long steady fading of Sanduleaks star, a peculiar symbiotic star known to produce the largest stellar jet ever discovered. We discuss by means of direct examples the crucial need for long-term multi-band observations to get a real understanding of symbiotic and other interacting binary stars. We eventually introduce BOMBOLO, a multi-band simultaneous imager for the SOAR 4m Telescope, whose design and construction we are currently leading.
We present the first part of a new catalog of variable stars (OIII-CVS) compiled from the data collected in the course of the third phase of the Optical Gravitational Lensing Experiment (OGLE-III). In this paper we describe the catalog of 3361 classi cal Cepheids detected in the ~40 square degrees area in the Large Magellanic Cloud. The sample consists of 1848 fundamental-mode (F), 1228 first-overtone (1O), 14 second-overtone (2O), 61 double-mode F/1O, 203 double-mode 1O/2O, 2 double-mode 1O/3O, and 5 triple-mode classical Cepheids. This sample is supplemented by the list of 23 ultra-low amplitude variable stars which may be Cepheids entering or exiting instability strip. The catalog data include VI high-quality photometry collected since 2001, and for some stars supplemented by the OGLE-II photometry obtained between 1997 and 2000. We provide basic parameters of the stars: coordinates, periods, mean magnitudes, amplitudes and parameters of the Fourier light curve decompositions. Individual objects of particular interest are discussed, including single-mode second-overtone Cepheids, multiperiodic pulsators with unusual period ratios or Cepheids in eclipsing binary systems. We discuss the variations of the Fourier coefficients with periods and point out on the sharp feature for periods around 0.35 days of first-overtone Cepheids, which can be explained by the occurrence of 2:1 resonance between the first and fifth overtones. Similar behavior at P=3 days for 1O Cepheids and P=10 days for F Cepheids are also interpreted as an effect of resonances between two radial modes. We fit the period-luminosity relations to our sample of Cepheids and compare these functions with previous determinations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا