ﻻ يوجد ملخص باللغة العربية
Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL properties.
The dynamics of desorption from a submonolayer of adsorbed atoms or ions are significantly influenced by the absence or presence of lateral diffusion of the adsorbed particles. When diffusion is present, the adsorbate configuration is simultaneously
Molecular dynamics (MD) simulations are used to investigate $^1$H nuclear magnetic resonance (NMR) relaxation and diffusion of bulk $n$-C$_5$H$_{12}$ to $n$-C$_{17}$H$_{36}$ hydrocarbons and bulk water. The MD simulations of the $^1$H NMR relaxation
It is well known that water inside hydrophobic nano-channels diffuses faster than bulk water. Recent theoretical studies have shown that this enhancement depends on the size of the hydrophobic nanochannels. However, experimental evidence of this depe
The relativistic kinetic theory approach has been employed to study four well-known transport coefficients that characterize heat flow and diffusion for the case of a hot mixture constituting of nucleons and pions. Medium effects on the cross-section
Clathrate hydrates hold considerable promise as safe and economical materials for hydrogen storage. Here we present a quantum mechanical study of H$_2$ and D$_2$ diffusion through a hexagonal face shared by two large cages of clathrate hydrates over