ترغب بنشر مسار تعليمي؟ اضغط هنا

Gapless spin liquid ground state in the S=1/2 vanadium oxyfluoride kagome antiferromagnet [NH4]2[C7H14N][V7O6F18]

119   0   0.0 ( 0 )
 نشر من قبل Lucy Clark Clark
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The vanadium oxyfluoride [NH4]2[C7H14N][V7O6F18] (DQVOF) is a geometrically frustrated magnetic bilayer material. The structure consists of S=1/2 kagome planes of V4+ d1 ions with S=1 V3+ d2 ions located between the kagome layers. Muon spin relaxation measurements demonstrate the absence of spin freezing down to 40 mK despite an energy scale of 60 K for antiferromagnetic exchange interactions. From magnetization and heat capacity measurements we conclude that the S=1 spins of the interplane V3+ ions are weakly coupled to the kagome layers, such that DQVOF can be viewed as an experimental model for S=1/2 kagome physics, and that it displays a gapless spin liquid ground state.

قيم البحث

اقرأ أيضاً

Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the success ful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO$_4$ with R$bar{3}$m symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite $Theta$$_w$ $sim$ -4 K), the low-T power-law temperature dependence of heat capacity and nonzero susceptibility suggest that YbMgGaO$_4$ is a promising gapless ($leq$ $|$$Theta$$_w$$|$/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO$_4$, approaches zero ($<$ 0.6 %). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures.
128 - F. Bert , D. Bono , P. Mendels 2005
Volborthite compound is one of the very few realizations of S=1/2 quantum spins on a highly frustrated kagome-like lattice. Low-T SQUID measurements reveal a broad magnetic transition below 2K which is further confirmed by a peak in the 51V nuclear s pin relaxation rate (1/T1) at 1.4K$pm$0.2K. Through 51V NMR, the ground state (GS) appears to be a mixture of different spin configurations, among which 20% correspond to a well defined short range order, possibly of the $sqrt{3} times sqrt{3}$ type. While the freezing involve all the Cu$^{2+}$ spins, only 40% of the copper moment is actually frozen which suggests that quantum fluctuations strongly renormalize the GS.
We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak sing le-ion anisotropy of $|D|$/$J_1$ $sim$ 4.6% is quantitatively determined by fitting to the electron spin resonance (ESR) linewidth and susceptibility measured at high temperatures. The weak single-ion anisotropy interactions, possibly along with other perturbations, e.g. next-nearest-neighbor interactions, suppress the long-range magnetic order and render the system disordered, as evidenced by both the absence of any clear magnetic reflections in neutron diffraction and the presence of the dominant paramagnetic ESR signal down to 2 K ($sim$ 0.04$J_1$$S^2$), where the magnetic entropy is almost zero. The power-law behavior of specific heat ($C_m$ $sim$ $T^{2.2}$) observed below the freezing temperature of $T_f$ = 25 K in $alpha$-CrOOH or below $T_f$ = 22 K in $alpha$-CrOOD is insensitive to the external magnetic field, and thus is consistent with the theoretical prediction of a gapless U(1) Dirac quantum spin liquid (QSL) ground state. At low temperatures, the spectral weight of the low-energy continuous spin excitations accumulates at the K points of the Brillouin zone, e.g. $|mathbf{Q}|$ = 4$pi$/(3$a$), and the putative Dirac cones are clearly visible. Our work is a first step towards the understanding of the possible Dirac QSL ground state in this triangular-lattice magnet with $S$ = 3/2.
146 - K. Morita , M. Yano , T. Ono 2008
We investigated the crystal structure of Rb$_2$Cu$_3$SnF$_{12}$ and its magnetic properties using single crystals. This compound is composed of Kagome layers of corner-sharing CuF$_{6}$ octahedra with a 2a x 2a enlarged cell as compared with the prop er Kagome layer. Rb$_2$Cu$_3$SnF$_{12}$ is magnetically described as an $S$=1/2 modified Kagome antiferromagnet with four kinds of neighboring exchange interaction. From magnetic susceptibility and high-field magnetization measurements, it was found that the ground state is a disordered singlet with the spin gap, as predicted from a recent theory. Exact diagonalization for a 12-site Kagome cluster was performed to analyze the magnetic susceptibility, and individual exchange interactions were evaluated.
The spin-1/2 $J_1$-$J_2$ Heisenberg model on square lattices are investigated via the finite projected entangled pair states (PEPS) method. Using the recently developed gradient optimization method combining with Monte Carlo sampling techniques, we a re able to obtain the ground states energies that are competitive to the best results. The calculations show that there is no Neel order, dimer order and plaquette order in the region of 0.42 $lesssim J_2/J_1lesssim$ 0.6, suggesting a single spin liquid phase in the intermediate region. Furthermore, the calculated staggered spin, dimer and plaquette correlation functions all have power law decay behaviours, which provide strong evidences that the intermediate nonmagnetic phase is a single gapless spin liquid state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا