ﻻ يوجد ملخص باللغة العربية
The vanadium oxyfluoride [NH4]2[C7H14N][V7O6F18] (DQVOF) is a geometrically frustrated magnetic bilayer material. The structure consists of S=1/2 kagome planes of V4+ d1 ions with S=1 V3+ d2 ions located between the kagome layers. Muon spin relaxation measurements demonstrate the absence of spin freezing down to 40 mK despite an energy scale of 60 K for antiferromagnetic exchange interactions. From magnetization and heat capacity measurements we conclude that the S=1 spins of the interplane V3+ ions are weakly coupled to the kagome layers, such that DQVOF can be viewed as an experimental model for S=1/2 kagome physics, and that it displays a gapless spin liquid ground state.
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the success
Volborthite compound is one of the very few realizations of S=1/2 quantum spins on a highly frustrated kagome-like lattice. Low-T SQUID measurements reveal a broad magnetic transition below 2K which is further confirmed by a peak in the 51V nuclear s
We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak sing
We investigated the crystal structure of Rb$_2$Cu$_3$SnF$_{12}$ and its magnetic properties using single crystals. This compound is composed of Kagome layers of corner-sharing CuF$_{6}$ octahedra with a 2a x 2a enlarged cell as compared with the prop
The spin-1/2 $J_1$-$J_2$ Heisenberg model on square lattices are investigated via the finite projected entangled pair states (PEPS) method. Using the recently developed gradient optimization method combining with Monte Carlo sampling techniques, we a