ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of muonium emission from silica aerogel

177   0   0.0 ( 0 )
 نشر من قبل Tsutomu Mibe
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Emission of muonium ($mu^{+}e^{-}$) atoms from silica aerogel into vacuum was observed. Characteristics of muonium emission were established from silica aerogel samples with densities in the range from 29 mg cm$^{-3}$ to 178 mg cm$^{-3}$. Spectra of muonium decay times correlated with distances from the aerogel surfaces, which are sensitive to the speed distributions, follow general features expected from a diffusion process, while small deviations from a simple room-temperature thermal diffusion model are identified. The parameters of the diffusion process are deduced from the observed yields.



قيم البحث

اقرأ أيضاً

59 - J. Beare , G. Beer , J.H. Brewer 2020
The emission of muonium ($mu^+e^-$) atoms into vacuum from silica aerogel with laser ablation on its surface was studied with various ablation structures at room temperature using the subsurface muon beams at TRIUMF and Japan Proton Accelerator Resea rch Complex (J-PARC). Laser ablation was applied to produce holes or grooves with typical dimensions of a few hundred $mu$m to a few mm, except for some extreme conditions. The measured emission rate tends to be higher for larger fractions of ablation opening and for shallower depths. More than a few ablation structures reach the emission rates similar to the highest achieved in the past measurements. The emission rate is found to be stable at least for a couple of days. Measurements of spin precession amplitudes for the produced muonium atoms and remaining muons in a magnetic field determine a muonium formation fraction of $(65.5 pm 1.8)$%. The precession of the polarized muonium atoms is also observed clearly in vacuum. A projection of the emission rates measured at TRIUMF to the corresponding rates at J-PARC is demonstrated taking the different beam condition into account reasonably.
Emission of muonium ($mu^+e^-$) atoms from a laser-processed aerogel surface into vacuum was studied for the first time. Laser ablation was used to create hole-like regions with diameter of about 270$~mu$m in a triangular pattern with hole separation in the range of 300--500$~mu$m. The emission probability for the laser-processed aerogel sample is at least eight times higher than for a uniform one.
We report a new measurement of the $n=2$ Lamb shift in Muonium using microwave spectroscopy. Our result of $1047.2(2.3)_textrm{stat}(1.1)_textrm{syst}$ MHz comprises an order of magnitude improvement upon the previous best measurement. This value mat ches the theoretical calculation within one standard deviation allowing us to set limits on CPT violation in the muonic sector, as well as on new physics coupled to muons and electrons which could provide an explanation of the muon $g-2$ anomaly.
We report on the characterization of silica aerogel thermal optical nonlinearity, obtained by z-scan technique. The results show that typical silica aerogels have nonlinear optical coefficient similar to that of glass $(simeq 10^{-12} $m$^2/$W), with negligible optical nonlinear absorption. The non-li-near coefficient can be increased to values in the range of $10^{-10} $m$^2/$W by embedding an absorbing dye in the aerogel. This value is one order of magnitude higher than that observed in the pure dye and in typical highly nonlinear materials like liquid crystals.
This Letter reports the first measurement of the $^{235}$U $overline{ u_{e}}$ energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9m from the 85MW$_{mathrm{th}}$ highly-enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678$pm$304 (stat.) $overline{ u_{e}}$-induced inverse beta decays (IBD), the largest sample from HEU fission to date, 99% of which are attributed to $^{235}$U. Despite broad agreement, comparison of the Huber $^{235}$U model to the measured spectrum produces a $chi^2/ndf = 51.4/31$, driven primarily by deviations in two localized energy regions. The measured $^{235}$U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the $overline{ u_{e}}$ energy region of 5-7MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا