ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio frequency spectroscopy measurement of the Lande g factor of the 5D5/2 state of Ba+ with a single trapped ion

62   0   0.0 ( 0 )
 نشر من قبل Matthew Hoffman
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an improved measurement of the Lande g factor of the 5D5/2 state of singly ionized barium. Measurements were performed on single Doppler-cooled 138Ba+ ions in linear Paul traps using two similar, independent apparatuses. Transitions between Zeeman sublevels of the 6S1/2 and 5D5/2 states were driven with two independent, stabilized radio-frequency synthesizers using a dedicated electrode within each ion trap chamber. State detection within each Zeeman manifold was achieved with a frequency-stabilized fiber laser operating at 1.76 microns. By calculating the ratio of the two Zeeman splittings, and using the measured Lande g factor of the 6S1/2 state, we find a value of 1.200371(4stat)(6sys) for g of 5D5/2.

قيم البحث

اقرأ أيضاً

We present the first terrestrial measurement of the Lande g factor of the 5D5/2 state of singly ionized barium. Measurements were performed on single Doppler-cooled 138Ba+ ions in a linear Paul trap. A frequency-stabilized fiber laser with nominal wa velength 1.762 um was scanned across the 6S1/2<->5D5/2 transition to spectroscopically resolve transitions between Zeeman sublevels of the ground and excited states. From the relative positions of the four narrow transitions observed at several different values for the applied magnetic field, we find a value of 1.2020+/-0.0005 for g of 5D5/2.
Using a single trapped barium ion we have developed an rf spectroscopy technique to measure the ratio of the off-resonant vector ac Stark effect (or light shift) in the 6S_{1/2} and 5D_{3/2} states to 0.1% precision. We find R = Delta_S / Delta_D = - 11.494(13) at 514.531 nm where Delta_{S,D} are the light shifts of the m = +/- 1/2 splittings due to circularly polarized light. Comparison of this result with an ab initio calculation of R would yield a new test of atomic theory. By appropriately choosing an off-resonant light shift wavelength one can emphasize the contribution of one or a few dipole matrix elements and precisely determine their values.
We present a measurement of the branching ratios from the 6P3/2 state of BaII into all dipoleallowed decay channels (6S1/2, 5D3/2 and 5D5/2). Measurements were performed on single 138Ba+ ions in a linear Paul trap with a frequency-doubled mode-locked Ti:Sapphire laser resonant with the 6S1/2->6P3/2 transition at 455 nm by detection of electron shelving into the dark 5D5/2 state. By driving a pi Rabi rotation with a single femtosecond pulse, a absolute measurement of the branching ratio to 5D5/2 state was performed. Combined with a measurement of the relative decay rates into 5D3/2 and 5D5/2 states performed with long trains of highly attenuated 455 nm pulses, it allowed the extraction of the absolute ratios of the other two decays. Relative strengths normalized to unity are found to be 0.756+/-0.046, 0.0290+/-0.0015 and 0.215+/-0.0064 for 6S1/2, 5D3/2 and 5D5/2 respectively. This approximately constitutes a threefold improvement over the best previous measurements and is a sufficient level of precision to compare to calculated values for dipole matrix elements.
The lifetime of the metastable 5d$^2$D$_{5/2}$ state has been measured for a single trapped Ba$^+$ ion in a Paul trap in Ultra High Vacuum (UHV) in the 10$^{-10}$ mbar pressure range. A total of 5046 individual periods when the ion was shelved in thi s state have been recorded. A preliminary value $tau_{D_{5/2}} = 26.4(1.7)$~s is obtained through extrapolation to zero residual gas pressure.
Collisions with background gas can perturb the transition frequency of trapped ions in an optical atomic clock. We develop a non-perturbative framework based on a quantum channel description of the scattering process, and use it to derive a master eq uation which leads to a simple analytic expression for the collisional frequency shift. As a demonstration of our method, we calculate the frequency shift of the Sr$^+$ optical atomic clock transition due to elastic collisions with helium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا