ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstration of a novel technique to measure two-photon exchange effects in elastic $e^pm p$ scattering

59   0   0.0 ( 0 )
 نشر من قبل Brian Raue
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct $e^pm p$ comparisons, which has the potential to make precise measurements over a broad range in $Q^2$ and scattering angles. We use the Jefferson Lab electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of $Q^2$ and scattering angle. Nonetheless, this measurement yields a data sample for $e^pm p$ with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. The final ratio of positron to electron scattering: $R=1.027pm0.005pm0.05$ for $<Q^2>=0.206$ GeV$^2$ and $0.830leq epsilonleq 0.943$.

قيم البحث

اقرأ أيضاً

194 - D. Rimal , D. Adikaram , B.A. Raue 2016
[Background] The electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments show a significant disagreement that grows with the squared four momentum transfer ($Q^{2}$). Calculations have shown th at the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. [Purpose] We measured the ratio of positron-proton to electron-proton elastic-scattering cross sections in order to determine the TPE contribution to elastic electron-proton scattering and thereby resolve the proton electric form factor discrepancy. [Methods] We produced a mixed simultaneous electron-positron beam in Jefferson Labs Hall B by passing the 5.6 GeV primary electron beam through a radiator to produce a bremsstrahlung photon beam and then passing the photon beam through a convertor to produce electron/positron pairs. The mixed electron-positron (lepton) beam with useful energies from approximately 0.85 to 3.5 GeV then struck a 30-cm long liquid hydrogen (LH$_2$) target located within the CEBAF Large Acceptance Spectrometer (CLAS). By detecting both the scattered leptons and the recoiling protons we identified and reconstructed elastic scattering events and determined the incident lepton energy. A detailed description of the experiment is presented.
We review recent theoretical and experimental progress on the role of two-photon exchange (TPE) in electron-proton scattering at low to moderate momentum transfers. We make a detailed comparison and analysis of the results of competing experiments on the ratio of e+p to e-p elastic scattering cross sections, and of the theoretical calculations describing them. A summary of the current experimental situation is provided, along with an outlook for future experiments.
119 - P.G. Blunden , W. Melnitchouk , 2005
A detailed study of two-photon exchange in unpolarized and polarized elastic electron--nucleon scattering is presented, taking particular account of nucleon finite size effects. Contributions from nucleon elastic intermediate states are found to have a strong angular dependence, which leads to a partial resolution of the discrepancy between the Rosenbluth and polarization transfer measurements of the proton electric to magnetic form factor ratio, G_E/G_M. The two-photon exchange contribution to the longitudinal polarization transfer P_L is small, whereas the contribution to the transverse polarization transfer P_T is enhanced at backward angles by several percent, increasing with Q^2. This gives rise to a small, ~3% suppression of G_E/G_M obtained from the polarization transfer ratio P_T/P_L at large Q^2. We also compare the two-photon exchange effects with data on the ratio of e^+ p to e^- p cross sections, which is predicted to be enhanced at backward angles. Finally, we evaluate the corrections to the form factors of the neutron, and estimate the elastic intermediate state contribution to the ^3He form factors.
122 - P.G. Blunden , W. Melnitchouk , 2003
Two-photon exchange contributions to elastic electron-proton scattering cross sections are evaluated in a simple hadronic model including the finite size of the proton. The corrections are found to be small in magnitude, but with a strong angular dep endence at fixed $Q^2$. This is significant for the Rosenbluth technique for determining the ratio of the electric and magnetic form factors of the proton at high $Q^2$, and partly reconciles the apparent discrepancy with the results of the polarization transfer technique.
163 - M. E. Christy , T. Gautam , L. Ou 2021
We report new precision measurements of the elastic electron-proton scattering cross section for momentum transfer squared (Q$^2$) up to 15.75~gevsq. These data allow for improved extraction of the proton magnetic form factor at high Q$^2$ and nearly double the Q$^2$ range of direct longitudinal/transverse separated cross sections. A comparison of our results to polarization measurements establishes the presence of hard two-photon exchange in the $e$-$p$ elastic scattering cross section at greater than 95% confidence level for Q$^2$ up to 8 (GeV/c)$^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا