ﻻ يوجد ملخص باللغة العربية
NASAs Interface Region Imaging Spectrograph (IRIS) space mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations will require forward modeling of Mg II h&k line formation from 3D radiation-MHD models. This paper is the first in a series where we undertake this forward modeling. We discuss the atomic physics pertinent to h&k line formation, present a quintessential model atom that can be used in radiative transfer computations and discuss the effect of partial redistribution (PRD) and 3D radiative transfer on the emergent line profiles. We conclude that Mg II h&k can be modeled accurately with a 4-level plus continuum Mg II model atom. Ideally radiative transfer computations should be done in 3D including PRD effects. In practice this is currently not possible. A reasonable compromise is to use 1D PRD computations to model the line profile up to and including the central emission peaks, and use 3D transfer assuming complete redistribution to model the central depression.
NASAs Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h&k lines as well as a slit-jaw imager centered at Mg II k. Unders
The bulk of the radiative output of a solar flare is emitted from the chromosphere, which produces enhancements in the optical and UV continuum, and in many lines, both optically thick and thin. We have, until very recently, lacked observations of tw
We performed coordinated observations of AR 12205, which produced a C-class flare on 2014 November 11, with the Interface Region Imaging Spectrograph (IRIS) and the Domeless Solar Telescope (DST) at Hida Observatory. Using spectral data in the Si IV
Observations from the textit{Interface Region Imaging Spectrograph} (textsl{IRIS}) often reveal significantly broadened and non-reversed profiles of the Mg II h, k and triplet lines at flare ribbons. To understand the formation of these optically thi
We analyze observations from the Interface Region Imaging Spectrograph of the Mg II k line, the Mg II UV subordinate lines, and the O I 135.6 nm line to better understand the solar plage chromosphere. We also make comparisons with observations from t