ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperfine-induced effects on the linear polarization of the K$alpha_1$ emission from helium-like ions

54   0   0.0 ( 0 )
 نشر من قبل Yuri Litvinov
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The linear polarization of the characteristic photon emission from few-electron ions is studied for its sensitivity with regard to the nuclear spin and magnetic moment of the ions. Special attention is paid, in particular, to the K$alpha_1$ ($1s 2p_{3/2} ^{1,3}P_{1,2} to 1s^2 ^1S_0$) decay of selected helium-like ions following the radiative electron capture into initially hydrogen-like species. Based on the density matrix theory, a unified description is developed that includes both, the many-electron and hyperfine interactions as well as the multipole-mixing effects arising from the expansion of the radiation field. It is shown that the polarization of the K$alpha_1$ line can be significantly affected by the mutipole mixing between the leading $M2$ and hyperfine-induced $E1$ components of $1s2p ^3P_2, F_i to 1s^2 ^1S_0, F_f$ transitions. This $E1$-$M2$ mixing strongly depends on the nuclear properties of the considered isotopes and can be addressed experimentally at existing heavy-ion storage rings.

قيم البحث

اقرأ أيضاً

The cross sections for the pp -> ppK+K- reaction were measured at three beam energies 2.65, 2.70, and 2.83 GeV at the COSY-ANKE facility. The shape of the K+K- spectrum at low invariant masses largely reflects the importance of Kbar{K} final state in teractions. It is shown that these data can be understood in terms of an elastic K+K- rescattering plus a contribution coming from the production of a K0bar{K}0 pair followed by a charge-exchange rescattering. Though the data are not yet sufficient to establish the size of the cusp at the K0bar{K}0 threshold, the low mass behaviour suggests that isospin-zero production is dominant.
In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orb it coupling. Recently, the STAR experiment has presented polarization signals for $Lambda$ hyperons and possible spin alignment signals for $phi$ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than $|eta|< sim 1$ will generate a larger value for the extracted $phi$-meson $rho_{00}$ parameter; thus a finite coverage can lead to an artificial deviation of $rho_{00}$ from 1/3. We also show that a finite $eta$ and $p_T$ coverage affect the extracted $p_H$ parameter for $Lambda$ hyperons when the real $p_H$ value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.
The experimental research on the irradiation of the functional design materials by the Helium ions in the linear accelerator is conducted. The experimental measurements techniques and data on the irradiation of the functional design materials by the Helium ions with the energy up to 4 MeV, including the detailed scheme of experimental measurements setup, are presented. The new design of accelerating structure of the IH-type such as POS-4, using the method of alternate-phase focusing with the step-by-step change of the synchronous phase along the focusing periods in a linear accelerator, is developed with the aim to irradiate the functional design materials by the Helium ions. The new design of the injector of the charged Helium ions with the energy of 120 KeV at the output of an accelerating tube and the accelerating structure of the type of POS-4 for the one time charged Helium ions acceleration in the linear accelerator are researched and developed. The special chamber for the irradiation of functional design materials by the Helium ions is also created. In the process of experiment, the temperature of a sample, the magnitude of current of Helium ions beam and the irradiation dose of sample are measured precisely. The experimental measurement setup and techniques are fully tested and optimized in the course of the research on the electro-physical properties of irradiated samples and the thermal-desorption of Helium ions in a wide range of temperatures
The hyperfine induced $2s2p ^3P_0, ^3P_2 to 2s^2 ^1S_0$ E1 transition probabilities of Be-like ions were calculated using grasp2K based on multi-configuration Dirac-Fock method and HFST packages. It was found that the hyperfine quenching rates are st rongly affected by the interference for low-Z Be-like ions, especially for $2s2p ^3P_0 to 2s^2 ^1S_0$ transition. In particular, the trends of interference effects with atomic number $Z$ in such two transitions are not monotone. The strongest interference effect occurs near Z=7 for $2s2p ^3P_0 to 2s^2 ^1S_0$ E1 transition, and near Z=9 for $2s2p ^3P_2 to 2s^2 ^1S_0$ E1 transition.
70 - P. Amaro 2009
A theoretical study the all two-photon transitions from initial bound states with ni = 2, 3 in hydrogenic ions is presented. High-precision values of relativistic decay rates for ions with nuclear charge in the range 1 =< Z =< 92 are obtained through the use of finite basis sets for the Dirac equation constructed from B-splines. We also report the spectral (energy) distributions of several resonant transitions, which exhibit interesting structures, such as zeroes in the emission spectrum, indicating that two-photon emission is strongly suppressed at certain frequencies. We compare two different approaches (the Line Profile Approach (LPA) and the QED approach based on the analysis of the relativistic two-loop self energy (TLA)) to regularize the resonant contribution to the decay rate. Predictions for the pure two-photon contributions obtained in these approaches are found to be in a good numerical agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا