ﻻ يوجد ملخص باللغة العربية
The presence of edges locally breaks the inversion symmetry of heterostructures and gives rise to lateral (edge) spin-orbit coupling (SOC), which, under some conditions, can lead to the formation of helical edge states. If the edge SOC is strong enough, the helical edge states can penetrate the band-gap and be energetically isolated from the bulk-like states. As a result backward scattering is suppressed, dissipationless helical edge channels protected against time-inversion symmetric perturbations emerge, and the system behaves as a 2D topological insulator (TI). However, unlike in previous works on TIs, the mechanism proposed here for the creation of protected helical edge states relies on the strong edge SOC rather than on band inversion.
We report magnetotransport properties of BaZnBi$_{2}$ single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by
The existence of a spin-orbit coupling (SOC) induced by the gradient of the effective mass in low-dimensional heterostructures is revealed. In structurally asymmetric quasi-two-dimensional semiconductor heterostructures the presence of a mass gradien
We study graphene which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpa
We study electronic transport across a helical edge state exposed to a uniform magnetic ({$vec B$}) field over a finite length. We show that this system exhibits Fabry-Perot type resonances in electronic transport. The intrinsic spin anisotropy of th
We consider transport properties of a single edge of a two-dimensional topological insulators, in presence of Rashba spin-orbit coupling, driven by two external time-dependent voltages and connected to a thin superconductor. We focus on the case of a