ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiferroicity with coexisting isotropic and anisotropic spins in Ca$_{3}$Co$_{2-x}$Mn$_{x}$O$_{6}$

131   0   0.0 ( 0 )
 نشر من قبل Jae Wook Kim
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study magnetic and multiferroic behavior in Ca$_3$Co$_{2-x}$Mn$_{x}$O$_6$ ($x sim$0.97) by high-field measurements of magnetization ($M$), magnetostriction ($L$($H$)/$L$), electric polarization ($P$), and magnetocaloric effect. This study also gives insight into the zero and low magnetic field magnetic structure and magnetoelectric coupling mechanisms. We measured $M$ and $Delta$$L$/$L$ up to pulsed magnetic fields of 92 T, and determined the saturation moment and field. On the controversial topic of the spin states of Co$^{2+}$ and Mn$^{4+}$ ions, we find evidence for $S$ = 3/2 spins for both ions with no magnetic field-induced spin-state crossovers. Our data also indicate that Mn$^{4+}$ spins are quasi-isotropic and develop components in the $ab$-plane in applied magnetic fields of 10 T. These spins cant until saturation at 85 T whereas the Ising Co$^{2+}$ spins saturate by 25 T. Furthermore, our results imply that mechanism for suppression of electric polarization with magnetic fields near 10 T is flopping of the Mn$^{4+}$ spins into the $ab$-plane, indicating that appropriate models must include the coexistence of Ising and quasi-isotropic spins.



قيم البحث

اقرأ أيضاً

108 - L. Seetha Lakshmi 2003
This paper is in continuation of our previous work on the structural, electrical and magnetic properties of Ru doped La(0.67)Ca(0.33)MnO(3) compounds (Ref.: L.Seetha Lakshmi et.al, J. Magn. Magn. Mater. 257, 195 (2003)). Here we report the results of magnetotransport measurements on La(0.67)Ca(0.33)Mn(1-x)Ru(x)O(3) (0<x< 0.1) compounds in the light of proposed magnetic phase separation.
With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$ _{1/3}$MnO$_3$ (LSCO/LCMO) multilayers. We demonstrate that these electronic and magnetic proximity effects are coupled and are common to these cuprate/manganite multilayers. Moreover, we show that they are closely linked to a specific interface termination with a direct Cu-O-Mn bond. We furthermore show that the intrinsic hole doping of the cuprate layers and the local strain due to the lattice mismatch between the cuprate and manganite layers are not of primary importance. These findings underline the central role of the covalent bonding at the cuprate/manganite interface in defining the spin-electronic properties.
We report an unusual nearly ferromagnetic, heavy-mass state with a surprisingly large Wilson ratio $R_{textrm{w}}$ (e.g., $R_{textrm{w}}sim$ 700 for $x =$ 0.2) in double layered ruthenates (Sr$_{1-x}$Ca$_{x}$)$_{3}$Ru$_{2}$O$_{7}$ with 0.08 $< x <$ 0 .4. This state does not evolve into a long-range ferromagnetically ordered state despite considerably strong ferromagnetic correlations, but freezes into a cluster-spin-glass at low temperatures. In addition, evidence of non-Fermi liquid behavior is observed as the spin freezing temperature of the cluster-spin-glass approaches zero near $x approx$ 0.1. We discuss the origin of this unique magnetic state from the Fermi surface information probed by Hall effect measurements.
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca(Co$_{1-x}$Fe$_{x}$)$_{y}$As$_{2}$, $0leq xleq1$, $1.86leq y leq 2$, are presented and reveal that A-type antiferromagnetic or der, with ordered moments lying along the $c$ axis, persists for $xlesssim0.12(1)$. The antiferromagnetic order is smoothly suppressed with increasing $x$, with both the ordered moment and N{e}el temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for $xleq0.25$, nor does ferromagnetic order for $x$ up to at least $x=0.104$, and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo$_{1.86}$As$_{2}$ to the tetragonal (T) phase of CaFe$_{2}$As$_{2}$ occurs. These results suggest that hole doping CaCo$_{1.86}$As$_{2}$ has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.
We have examined an isovalent Rh substitution effect on the transport properties of the thermoelectric oxide Ca$_3$Co$_{4}$O$_9$ using single-crystalline form. With increasing Rh content $x$, both the electrical resistivity and the Seebeck coefficien t change systematically up to $x=0.6$ for Ca$_3$Co$_{4-x}$Rh$_{x}$O$_9$ samples. In the Fermi-liquid regime where the resistivity behaves as $rho=rho_0+AT^2$ around 120 K, the $A$ value decreases with increasing Rh content, indicating that the correlation effect is weakened by Rh $4d$ electrons with extended orbitals. We find that, in contrast to such a weak correlation effect observed in the resistivity of Rh-substituted samples, the low-temperature Seebeck coefficient is increased with increasing Rh content, which is explained with a possible enhancement of a pseudogap associated with the short-range order of spin density wave. In high-temperature range above room temperature, we show that the resistivity is largely suppressed by Rh substitution while the Seebeck coefficient becomes almost temperature-independent, leading to a significant improvement of the power factor in Rh-substituted samples. This result is also discussed in terms of the differences in the orbital size and the associated spin state between Co $3d$ and Rh $4d$ electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا