ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a theory of extremely intermittent pulsars I: Does something orbits PSR B1931 + 24 ?

49   0   0.0 ( 0 )
 نشر من قبل Fabrice Mottez
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fabrice Mottez




اسأل ChatGPT حول البحث

We investigate whether one or many companions are orbiting the extremely intermittent pulsar PSR B1931+24. We constrained our analysis on previous observations of eight fundamental properties of PSR B1931+24. The most puzzling properties are the intermittent nature of the pulsars activity, with active and quiet phases that alternate quasi-periodically; the variation of the slowing-down rate of its period between active and quiet phases; and because there are no timing residuals, it is highly unlikely that the pulsar has a massive companion. Here, we examine the effects that one putative companion immersed in the magnetospheric plasma or the wind of the pulsar might have, as well as the associated electric current distribution. We analysed several possibilities for the distance and orbit of this hypothetical companion and the nature of its interaction with the neutron star. We show that if the quasi-periodic behaviour of PSR B1931+24 was caused by a companion orbiting the star with a period of 35 or 70 days, the radio emissions, usually considered to be those of the pulsar would in that specific case be emitted in the companions environment. We analysed four possible configurations and conclude that none of them would explain the whole set of peculiar properties of PSR 1931+24. We furthermore considered a period 70 days for the precession of the periastron associated to an orbit very close to the neutron star. This hypothesis is analysed in a companion paper.

قيم البحث

اقرأ أيضاً

44 - N. Rea 2006
PSR B1931+24 is the first intermittent radio pulsar discovered to date, characterized by a 0.8 s pulsation which turns on and off quasi-periodically every ~35 days, with a duty cycle of ~10%. We present here X-ray and optical observations of PSR B193 1+24 performed with the Chandra X-ray Observatory and Isaac Newton Telescope, respectively. Simultaneous monitoring from the Jodrell Bank Observatory showed that this intermittent pulsar was in the radio-on phase during our observations. We do not find any X-ray or optical counterpart to PSR B1931+24 translating into an upper limit of ~2x10^{31} erg/s on the X-ray luminosity, and of g > 22.6 on the optical magnitude. If the pulsar is isolated, these limits cannot constrain the dim X-ray and optical emission expected for a pulsar of that age (~1.6 Myr). We discuss the possibility that the quasi-periodic intermittent behavior of PSR B1931+24 is due to the presence of a low mass companion star or gaseous planet, tight with the pulsar in an eccentric orbit. In order to constrain the parameters of this putative binary system we re-analysed the pulsar radio timing residuals and we found that (if indeed hosted in a binary system), PSR B1931+24 should have a very low mass companion and an orbit of low inclination.
153 - N. Nishizuka 2013
The Soft X-ray Telescope (SXT) on board Yohkoh revealed that the ejection of X-ray emitting plasmoid is sometimes observed in a solar flare. It was found that the ejected plasmoid is strongly accelerated during a peak in the hard X-ray emission of th e flare. In this paper we present an examination of the GOES X 2.3 class flare that occurred at 14.51 UT on 2000 November 24. In the SXT images we found multiple plasmoid ejections with velocities in the range of 250-1500 km/s, which showed blob-like or loop-like structures. Furthermore, we also found that each plasmoid ejection is associated with an impulsive burst of hard X-ray emission. Although some correlation between plasmoid ejection and hard X-ray emission has been discussed previously, our observation shows similar behavior for multiple plasmoid ejection such that each plasmoid ejection occurs during the strong energy release of the solar flare. As a result of temperature-emission measure analysis of such plasmoids, it was revealed that the apparent velocities and kinetic energies of the plasmoid ejections show a correlation with the peak intensities in the hard X-ray emissions.
139 - G. Hobbs , I. Heywood , M. E. Bell 2015
We use observations from the Boolardy Engineering Test Array (BETA) of the Australian Square Kilometre Array Pathfinder (ASKAP) telescope to search for transient radio sources in the field around the intermittent pulsar PSR J1107-5907. The pulsar is thought to switch between an off state in which no emission is detectable, a weak state and a strong state. We ran three independent transient detection pipelines on two-minute snapshot images from a 13 hour BETA observation in order to 1) study the emission from the pulsar, 2) search for other transient emission from elsewhere in the image and 3) to compare the results from the different transient detection pipelines. The pulsar was easily detected as a transient source and, over the course of the observations, it switched into the strong state three times giving a typical timescale between the strong emission states of 3.7 hours. After the first switch it remained in the strong state for almost 40 minutes. The other strong states lasted less than 4 minutes. The second state change was confirmed using observations with the Parkes radio telescope. No other transient events were found and we place constraints on the surface density of such events on these timescales. The high sensitivity Parkes observations enabled us to detect individual bright pulses during the weak state and to study the strong state over a wide observing band. We conclude by showing that future transient surveys with ASKAP will have the potential to probe the intermittent pulsar population.
Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 193 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using Pulsar ALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 minutes. We also describe the first Einstein@Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSR J2007+2722s pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but can not prove that PSR J2007+2722 is at least ~ 100 kyr old. In the future, we expect that the massive computing power provided by volunteers should enable many additional radio pulsar discoveries.
112 - K. Perraut 2019
The formation and the evolution of protoplanetary disks are important stages in the lifetime of stars. The processes of disk evolution and planet formation are intrinsically linked. We spatially resolve with GRAVITY/VLTI in the K-band the sub au-scal e region of 27 stars to gain statistical understanding of their properties. We look for correlations with stellar parameters, such as luminosity, mass, temperature and age. Our sample also cover a range of various properties in terms of reprocessed flux, flared or flat morphology, and gaps. We developed semi-physical geometrical models to fit our interferometric data. Our best models correspond to smooth and wide rings, implying that wedge-shaped rims at the dust sublimation edge are favored, as found in the H-band. The closure phases are generally non-null with a median value of ~10 deg, indicating spatial asymmetries of the intensity distributions. Multi-size grain populations could explain the closure phase ranges below 20-25 deg but other scenarios should be invoked to explain the largest ones. Our measurements extend the Radius-Luminosity relation to ~1e4 Lsun and confirm the significant spread around the mean relation observed in the H-band. Gapped sources exhibit a large N-to-K band size ratio and large values of this ratio are only observed for the members of our sample that would be older than 1 Ma, less massive, and with lower luminosity. In the 2 Ms mass range, we observe a correlation in the increase of the relative age with the transition from group II to group I, and an increase of the N-to-K size ratio. However, the size of the current sample does not yet permit us to invoke a clear universal evolution mechanism across the HAeBe mass range. The measured locations of the K-band emission suggest that these disks might be structured by forming young planets, rather than by depletion due to EUV, FUV, and X-ray photo-evaporation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا