ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the 1919 Ejecta of V605 Aquilae

115   0   0.0 ( 0 )
 نشر من قبل Geoffrey Clayton
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New imaging of V605 Aql, was obtained in 2009 with HST/WFPC2, which had a nova-like outburst in 1919, and is located at the center of the planetary nebula (PN), Abell 58. This event has long been ascribed to a final helium shell flash, but it has been suggested recently that it may instead have been an ONe nova. The new images provide an 18 year baseline for the expansion of the ejecta from the 1919 event. In addition, the central star has been directly detected in the visible for the first time since 1923, when it faded from sight due to obscuration by dust. The expansion of the ejecta has a velocity of ~200 km/s, and an angular expansion rate of ~10 mas/yr, consistent with a 1919 ejection. This implies a geometric distance of 4.6 kpc for V605 Aql, consistent with previous estimates. The gas mass in the central knot of ejecta was previously estimated to be 5 x 10^-5 M(Sun). It is estimated that warm dust associated with this gas has a mass of ~10^-5 M(Sun). There is also evidence for a significant amount, 10^-3 M(Sun), of cold (75 K) dust, which may be associated with its PN. The knot ejected in 1919 is asymmetrical and is approximately aligned with the asymmetry of the surrounding PN. Polarimetric imaging was obtained to investigate whether the 2001 spectrum of V605 Aql was obtained primarily in scattered light from dust in the central knot, but the signal-to-noise in the data was insufficient to measure the level of polarization.

قيم البحث

اقرأ أيضاً

V605 Aquilae is today widely assumed to have been the result of a final helium shell flash occurring on a single post-asymptotic giant branch star. The fact that the outbursting star is in the middle of an old planetary nebula and that the ejecta ass ociated with the outburst is hydrogen deficient supports this diagnosis. However, the material ejected during that outburst is also extremely neon rich, suggesting that it derives from an oxygen-neon-magnesium star, as is the case in the so-called neon novae. We have therefore attempted to construct a scenario that explains all the observations of the nebula and its central star, including the ejecta abundances. We find two scenarios that have the potential to explain the observations, although neither is a perfect match. The first scenario invokes the merger of a main sequence star and a massive oxygen-neon-magnesium white dwarf. The second invokes an oxygen-neon-magnesium classical nova that takes place shortly after a final helium shell flash. The main drawback of the first scenario is the inability to determine whether the ejecta would have the observed composition and whether a merger could result in the observed hydrogen-deficient stellar abundances observed in the star today. The second scenario is based on better understood physics, but, through a population synthesis technique, we determine that its frequency of occurrence should be very low and possibly lower than what is implied by the number of observed systems. While we could not envisage a scenario that naturally explains this object, this is the second final flash star which, upon closer scrutiny, is found to have hydrogen-deficient ejecta with abnormally high neon abundances. These findings are in stark contrast with the predictions of the final helium shell flash and beg for an alternative explanation.
Near Infrared (NIR) and optical photometry and spectroscopy are presented for the nova V1831 Aquilae, covering the early decline and dust forming phases during the first $sim$90 days after its discovery. The nova is highly reddened due to interstella r extinction. Based solely on the nature of NIR spectrum we are able to classify the nova to be of the Fe II class. The distance and extinction to the nova are estimated to be 6.1 $pm$ 0.5 kpc and $A_{rm v}$ $sim$ 9.02 respectively. Lower limits of the electron density, emission measure and ionized ejecta mass are made from a Case B analysis of the NIR Brackett lines while the neutral gas mass is estimated from the optical [OI] lines. We discuss the cause for a rapid strengthening of the He I 1.0830 $mu$m line during the early stages. V1831 Aql formed a modest amount of dust fairly early ($sim$ 19.2 days after discovery); the dust shell is not seen to be optically thick. Estimates are made of the dust temperature, dust mass and grain size. Dust formation commences around day 19.2 at a condensation temperature of 1461 $pm$ 15 K, suggestive of a carbon composition, following which the temperature is seen to gradually decrease to 950K. The dust mass shows a rapid initial increase which we interpret as being due to an increase in the number of grains, followed by a period of constancy suggesting the absence of grain destruction processes during this latter time. A discussion is made of the evolution of these parameters, including certain peculiarities seen in the grain radius evolution.
The determination of pulsation mode and distance for field Cepheids is a complicated problem best resolved by a luminosity estimate. For illustration a technique based on spectroscopic luminosity discrimination is applied to the 4.47d s-Cepheid FF Aq l. Line ratios in high dispersion spectra of the variable yield values of <Mv>=-3.40+-0.02 s.e.(+-0.04 s.d.), average effective temperature Teff=6195+-24 K, and intrinsic color (<B>-<V>)o = +0.506+-0.007, corresponding to a reddening of E(B-V)=0.25+-0.01, or E(B-V)(B0)=0.26+-0.01. The skewed light curve, intrinsic color, and luminosity of FF Aql are consistent with fundamental mode pulsation for a small amplitude classical Cepheid on the blue side of the instability strip, not a sinusoidal pulsator. A distance of 413+-14 pc is estimated from the Cepheids angular diameter in conjunction with a mean radius of <R>=39.0+-0.7 Rsun inferred from its luminosity and effective temperature. The dust extinction towards FF Aql is described by a ratio of total-to-selective extinction of Rv=Av/E(B-V)=3.16+-0.34 according to the stars apparent distance modulus.
An incidental spectrum of the poorly studied long period variable EF Aquilae shows [O III] emission indicative of a symbiotic star. Strong GALEX detections in the UV reinforce this classification, providing overt evidence for the presence of the hot subluminous companion. Recent compilations of the photometric behavior strongly suggest that the cool component is a Mira variable. Thus EF Aql appears to be a member of the rare symbiotic Mira subgroup.
We investigate the common envelope binary interaction, that leads to the formation of compact binaries, such as the progenitor of Type Ia supernovae or of mergers that emit detectable gravitational waves. In this work we diverge from the classic nume rical approach that models the dynamic in-spiral. We focus instead on the asymptotic behaviour of the common envelope expansion after the dynamic in-spiral terminates. We use the SPH code {sc phantom} to simulate one of the setups from Passy et al., with a 0.88~ms, 83~rs RGB primary and a 0.6~ms companion, then we follow the ejecta expansion for $simeq 50$~yr. Additionally, we utilise a tabulated equation of state including the envelope recombination energy in the simulation (Reichardt et al.), achieving a full unbinding. We show that, as time passes, the envelopes radial velocities dominate over the tangential ones, hence allowing us to apply an homologous expansion kinematic model to the ejecta. The external layers of the envelope become homologous as soon as they are ejected, but it takes $simeq 5000$~days ($simeq 14$~yr) for the bulk of the unbound gas to achieve an homologous expanding regime. We observe that the complex distribution generated by the dynamic in-spiral evolves into a more ordered, ring-like shaped one in the asymptotic regime. We show that the thermodynamics of the expanding envelope are in very good agreement with those expected for an adiabatically expanding sphere under the homologous condition and give a prediction for the location and temperature of the photosphere assuming dust to be the main source of opacity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا