ﻻ يوجد ملخص باللغة العربية
The unusual quantum Hall effect (QHE) in graphene is often discussed in terms of Dirac fermions moving with a linear dispersion relation. The same phenomenon will be explained in terms of the more traditional composite bosons, which move with a linear dispersion relation. The electron (wave packet) moves easier in the direction [1,1,0,c-axis] = [1,1,0] of the honeycomb lattice than perpendicular to it, while the hole moves easier in [0,0,1]. Since electrons and holes move in different channels, the number densities can be high especially when the Fermi surface has necks. The strong QHE arises from the phonon exchange attraction in the neighborhood of the neck Fermi surfaces. The plateau observed for the Hall conductivity and the accompanied resistivity drop is due to the Bose-Einstein condensation of the c-bosons, each forming from a pair of one-electron--two-fluxons c-fermions by phonon-exchange attraction.
Devices made from graphene encapsulated in hexagonal boron-nitride exhibit pronounced negative bend resistance and an anomalous Hall effect, which are a direct consequence of room-temperature ballistic transport on a micrometer scale for a wide range
Graphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magneti
Nanoparticles of superconducting YBa2Cu3O7-delta (YBCO) (Tc = 91 K) exhibit ferromagnetism at room temperature while the bulk YBCO, obtained by heating the nanoparticles at high temperature (940 degree C), shows a linear magnetization curve. Across t
Graphene is ideally suited for photonic and optoelectronic applications, with a variety of photodetectors (PDs) in the visible, near-infrared (NIR), and THz reported to date, as well as thermal detectors in the mid-infrared (MIR). Here, we present a
We report on experimental studies of terahertz (THz) radiation transmission through grating-gate graphene-channel transistor nanostructures and demonstrate room temperature THz radiation amplification stimulated by current-driven plasmon excitations.