ﻻ يوجد ملخص باللغة العربية
Core-collapse supernovae emit on the order of 3x10^53 ergs in high-energy neutrinos over a time of order 10 seconds, and so decrease their mass by about 0.2 solar mass. If the explosion is nearly spherically symmetric, there will be little gravitational wave emission. Nevertheless, the sudden decrease of mass of the progenitor may cause a change in the gravitational time delay of signals from a nearby pulsar. We calculate the change in arrival times as successive pulses pass through the neutrino shell at different times, and find that the effect may be detectable in ideal circumstances.
Pulsar timing experiments are currently searching for gravitational waves, and this dissertation focuses on the development and study of the pulsar timing residual models used for continuous wave searches. The first goal of this work is to re-present
We discuss the prospects of gravitational lensing of gravitational waves (GWs) coming from core-collapse supernovae (CCSN). As the CCSN GW signal can only be detected from within our own Galaxy and the local group by current and upcoming ground-based
Assessing the probability that two or more gravitational waves (GWs) are lensed images of the same source requires an understanding of the image properties, including their relative phase shifts in strong lensing (SL). For non-precessing, circular bi
We study how to probe bispectra of stochastic gravitational waves with pulsar timing arrays. The bispectrum is a key to probe the origin of stochastic gravitational waves. In particular, the shape of the bispectrum carries valuable information of inf
We describe the design of a gravitational wave timing array, a novel scheme that can be used to search for low-frequency gravitational waves by monitoring continuous gravitational waves at higher frequencies. We show that observations of gravitationa