ترغب بنشر مسار تعليمي؟ اضغط هنا

An evaluation of the exposure in nadir observation of the JEM-EUSO mission

97   0   0.0 ( 0 )
 نشر من قبل Andreas Haungs
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the exposure during nadir observations with JEM-EUSO, the Extreme Universe Space Observatory, on-board the Japanese Experiment Module of the International Space Station. Designed as a mission to explore the extreme energy Universe from space, JEM-EUSO will monitor the Earths nighttime atmosphere to record the ultraviolet light from tracks generated by extensive air showers initiated by ultra-high energy cosmic rays. In the present work, we discuss the particularities of space-based observation and we compute the annual exposure in nadir observation. The results are based on studies of the expected trigger aperture and observational duty cycle, as well as, on the investigations of the effects of clouds and different types of background light. We show that the annual exposure is about one order of magnitude higher than those of the presently operating ground-based observatories.

قيم البحث

اقرأ أيضاً

EUSO-SPB1 was a balloon-borne pathfinder mission of the JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program. A 12-day long flight started from New Zealand on April 25th, 2017 on-board the NASAs Super Pressure Ballo on. With capability of detecting EeV energy air showers, the data acquisition was performed using a 1 m^2 two-Fresnel-lens UV-sensitive telescope with fast readout electronics in the air shower detection mode over ~30 hours at ~16--30 km above South Pacific. Using a variety of approaches, we searched for air shower events. Up to now, no air shower events have been identified. The effective exposure, regarding the role of the clouds in particular, was estimated based on the air shower and detector simulations together with a numerical weather forecast model. Compared with the case assuming the fully clear atmosphere conditions, more than ~60% of showers are detectable regardless the presence of the clouds. The studies in the present work will be applied in the follow-up pathfinders and in the future full-scale missions in the JEM-EUSO program.
This document contains a summary of the workshop which took place on 22 - 24 February 2012 at the Kavli Institute of Cosmological Physics in the University of Chicago. The goal of the workshop was to discuss the physics reach of the JEM-EUSO mission and how best to implement a global ground based calibration system for the instrument to realize the physics goal of unveiling the origin of the highest energy cosmic rays.
Compilation of papers presented by the JEM-EUSO Collaboration at the 36th International Cosmic Ray Conference (ICRC), held July 24 through August 1, 2019 in Madison, Wisconsin.
The JEM-EUSO mission aims to explore the origin of the extreme energy cosmic rays (EECRs) through the observation of air-shower fluorescence light from space. The superwide-field telescope looks down from the International Space Station onto the nigh t sky to detect UV photons (fluorescence and Cherenkov photons) emitted from air showers. Such a space detector offers the remarkable opportunity to observe a huge volume of atmosphere at once and will achieve an unprecedented statistics within a few years of operation. Several test experiments are currently in operation: e.g., one to observe the fluorescence background from the edge of the Atmosphere (EUSO-Balloon), or another to demonstrate on ground the capability of detecting air showers with a EUSO-type telescope (EUSO-TA). In this contribution a short review on the scientific objectives of the mission and an update of the instrument definition, performances and status, as well as status of the test experiments will be given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا