ﻻ يوجد ملخص باللغة العربية
The nearby Sun-like star HD 114174 exhibits a strong and persistent Doppler acceleration indicating the presence of an unseen distant companion. We have acquired high-contrast imaging observations of this star using NIRC2 at Keck and report the direct detection of the body responsible for causing the trend. HD 114174 B has a projected separation of 692+/-9 mas (18.1 AU) and is 10.75+/-0.12 magnitudes (contrast of 5x10{-5}) fainter than its host in the K-band, requiring aggressive point-spread function subtraction to identify. Our astrometric time baseline of 1.4 years demonstrates physical association through common proper motion. We find that the companion has absolute magnitude, M_J=13.97+/-0.11, and colors, J-K= 0.12+/-0.16 mag. These characteristics are consistent with an ~T3 dwarf, initially leading us to believe that HD 114174 B was a substellar object. However, a dynamical analysis that combines radial velocity measurements with available imaging data indicates a minimum mass of m=0.260+/-0.010Msun. We conclude that HD 114174 B must be a white dwarf. Assuming a hydrogen-rich composition, atmospheric and evolutionary model fits yield an effective temperature Teff = 8160+/-4000 K, surface gravity log g=8.90+/-0.02, and cooling age of t_c=3.4 Gyr, which is consistent with the 4.7+/-2.4 Gyr host star isochronal age estimate. HD 114174 B is a benchmark object located only d=26.1 pc from the Sun. It may be studied at a level of detail comparable to Sirius and Procyon, and used to understand the link between the mass of white dwarf remnants with that of their progenitors.
Monitoring the long-term radial velocity (RV) and acceleration of nearby stars has proven an effective method for directly detecting binary and substellar companions. Some fraction of nearby RV trend systems are expected to be comprised of compact ob
We present the first near infra-red spectrum of the faint white dwarf companion HD 114174 B, obtained with Project 1640. Our spectrum, covering the Y, J and H bands, combined with previous TRENDS photometry measurements, allows us to place further co
The nearby Sun-like star HD 19467 shows a subtle radial velocity (RV) acceleration of -1.37+/-0.09 m/s/yr over an 16.9 year time baseline (an RV trend), hinting at the existence of a distant orbiting companion. We have obtained high-contrast adaptive
The mass and age of substellar objects are degenerate parameters leaving the evolutionary state of brown dwarfs ambiguous without additional information. Theoretical models are normally used to help distinguish between old, massive brown dwarfs and y
We present the direct imaging detection of a faint tertiary companion to the single-lined spectroscopic binary HD 8375 AB. Initially noticed as an 53 m/s/yr Doppler acceleration by Bowler et al. 2010, we have obtained high-contrast adaptive optics ob