ترغب بنشر مسار تعليمي؟ اضغط هنا

Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance

87   0   0.0 ( 0 )
 نشر من قبل Mikhail Kats
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate that a thin (~150 nm) film of vanadium dioxide (VO2) deposited on sapphire has an anomalous thermal emittance profile when heated, which arises due to the optical interaction between the film and the substrate when the VO2 is at an intermediate state of its insulator-metal transition (IMT). Within the IMT region, the VO2 film comprises nanoscale islands of metal- and dielectric-phase, and can thus be viewed as a natural, disordered metamaterial. This structure displays perfect blackbody-like thermal emissivity over a narrow wavelength range (~40 cm-1), surpassing the emissivity of our black soot reference. We observed large broadband negative differential thermal emittance over a >10 {deg}C range: upon heating, the VO2/sapphire structure emitted less thermal radiation and appeared colder on an infrared camera. We anticipate that emissivity engineering with thin film geometries comprising VO2 will find applications in infrared camouflage, thermal regulation, infrared tagging and labeling.



قيم البحث

اقرأ أيضاً

117 - Baowen Li , Lei Wang , 2004
We report on the first model of a thermal transistor to control heat flow. Like its electronic counterpart, our thermal transistor is a three-terminal device with the important feature that the current through the two terminals can be controlled by s mall changes in the temperature or in the current through the third terminal. This control feature allows us to switch the device between off (insulating) and on (conducting) states or to amplify a small current. The thermal transistor model is possible because of the negative differential thermal resistance.
High performance metasurfaces for thermal radiative cooling applications can be identified using computational optimization methods. This work has identified an easy-to-fabricate temperature phase transition VO2 nanowire array laid atop dielectric Ba F2 Fabry-Perot cavity-on-metal with total coating thickness of 2 um. This optimized structure has ability to self-adaptively switch between high reflectance at low temperature to high emissivity at high temperature in the broad thermal infrared spectrum. This design demonstrates exceptional turn-down figure-of-merit compared to previously realized configurations utilizing VO2 metasurfaces and multilayers. The mechanism is achieved with a sub-wavelength nanowire array effective medium that switches between anti-reflecting gradient coating and Fabry-Perot interference. This thin metasurface coating could impact self-cooling of the solar cells, batteries, and electrical devices where risk presents at high temperatures.
Vanadium dioxide is a complex oxide material, which shows large resistivity and optical reflectance change while transitioning from the insulator to metal phase at ~68 {deg}C. In this work, we use a modified atmospheric thermal oxidation method to ox idize RF-sputtered Vanadium films. Structural, surface-morphology and phase-transition properties of the oxidized films as a function of oxidation duration are presented. Phase-pure VO2 films are obtained by oxidizing ~130 nm Vanadium films in short oxidation duration of ~30 seconds. Compared to previous reports on VO2 synthesis using atmospheric oxidation of Vanadium films of similar thickness, we obtain a reduction in oxidation duration by more than one order. Synthesized VO2 thin film shows resistance switching of ~3 orders of magnitude. We demonstrate optical reflectance switching in long-wave infrared wavelengths in VO2 films synthesized using atmospheric oxidation of Vanadium. The extracted refractive index of VO2 in the insulating and in the metallic phase is in good agreement with VO2 synthesized using other methods. The considerable reduction in oxidation time of VO2 synthesis while retaining good resistance and optical switching properties will help in integration of VO2 in limited thermal budget processes, enabling further applications of this phase-transition material.
141 - Nuo Yang , Nianbei Li , Lei Wang 2007
We study thermal properties of one dimensional(1D) harmonic and anharmonic lattices with mass gradient. It is found that the temperature gradient can be built up in the 1D harmonic lattice with mass gradient due to the existence of gradons. The heat flow is asymmetric in the anharmonic lattices with mass gradient. Moreover, in a certain temperature region the {it negative differential thermal resistance} is observed. Possible applications in constructing thermal rectifier and thermal transistor by using the graded material are discussed.
276 - Yinyue Lin , Yanxia Cui , Fei Ding 2016
The trapped rainbow effect has been mostly found on tapered anisotropic metamaterials (MMs) made of low loss noble metals, such as gold, silver, etc. In this work, we demonstrate that an anisotropic MM waveguide made of high loss metal tungsten can a lso support the trapped rainbow effect similar to the noble metal based structure. We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 micrometer to 9 micrometer with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow-light resonant modes is responsible for the efficient absorption at wavelengths longer than 2 micrometer, and the anti-reflection effect of tapered lossy material gives rise to the near perfect absorption at shorter wavelengths. The absorption spectrum suffers a small dip at around 4.2 micrometer where the first order and second order slow-light modes get overlapped, but we can get rid of this dip if the absorption band edge at long wavelength range is reduced down to 5 micrometer. The parametrical study reflects that the absorption bandwidth is mainly determined by the filling ratio of tungsten as well as the bottom diameter of the nano-cones and the interaction between neighboring nano-cones is quite weak. Our proposal has some potential applications in the areas of solar energy harvesting and thermal emitters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا