ﻻ يوجد ملخص باللغة العربية
We present a phenomenological study of the current status of the application of our approach of {it exact} amplitude-based resummation in quantum field theory to precision QCD calculations, by realistic MC event generator methods, as needed for precision LHC physics. We discuss recent results as they relate to the interplay of the attendant IR-Improved DGLAP-CS theory of one of us and the precision of exact NLO matrix-element matched parton shower MCs in the Herwig6.5 environment as determined by comparison to recent LHC experimental observations on single heavy gauge boson production and decay. The level of agreement between the new theory and the data continues to be a reason for optimism. In the spirit of completeness, we discuss as well other approaches to the same theoretical predictions that we make here from the standpoint of physical precision with an eye toward the (sub-)1% QCD otimes EW total theoretical precision regime for LHC physics.
We introduce the new IR-improved Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-Callan-Symanzik (DGLAP-CS) kernels recently developed by one of us into the HERWIG6.5 to generate a new MC, HERWIRI1.0(31), for hadron-hadron scattering at high energies. We
We present Monte Carlo data showing the comparison between the parton shower generated by the standard DGLAP-CS kernels and that generated with the new IR-improved DGLAP-CS kernels recently developed by one of us(BFLW). We do this in the context of H
We have implemented the new IR-improved Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-Callan-Symanzik (DGLAP-CS) kernels recently developed by one of us in the HERWIG6.5 environment to generate a new MC, HERWIRI1.0(31), for hadron-hadron scattering at h
It is shown that exact, amplitude-based resummation allows IR-improvement of the usual DGLAP theory. This results in a new set of kernels, parton distributions and attendant reduced cross sections, so that the QCD perturbative result for the respecti
We summarize the recent progress in a new approach to precision LHC physics based on the IR-improved DGLAP-CS theory as it relates to a new MC friendly exponentiated scheme for precision calculation of higher order corrections to LHC physics in which