ﻻ يوجد ملخص باللغة العربية
According to the no-hair theorem, astrophysical black holes are uniquely described by the Kerr metric. In order to test this theorem with observations in either the electromagnetic or gravitational-wave spectra, several Kerr-like spacetimes have been constructed which describe potential deviations from the Kerr spacetime in parametric form. For electromagnetic tests of the no-hair theorem, such metrics allow for the proper modeling of the accretion flows around candidate black holes and the radiation emitted from them. In many of these models, the location of the inner edge of the accretion disk is of special importance. This inner edge is often taken to coincide with the innermost stable circular orbit, which can serve as a direct probe of the spin and the deviation from the Kerr metric. In certain cases, however, an innermost stable circular orbit does not exist, and the inner edge of an accretion disk is instead determined by an instability against small perturbations in the direction vertical to the disk. In this paper, I analyze the properties of accretion disks in the Kerr-like metric proposed by Johannsen and Psaltis [Phys. Rev. D 83, 124015 (2011)], whose inner edges are located at the radii where this vertical instability occurs. I derive expressions of the energy and axial angular momentum of disk particles that move on circular equatorial orbits and calculate the locations of the inner disk edges. As a possible observable of such accretion disks, I simulate profiles of relativistically broadened iron lines and show that they depend significantly on the values of the spin and the deviation parameter.
We make a critical comparison between ultra-high energy particle collisions around an extremal Kerr black hole and that around an over-spinning Kerr singularity, mainly focusing on the issue of the timescale of collisions. We show that the time requi
We apply the analogy between gravitational fields and optical media in the general relativistic geometric optics framework to describe how light can acquire orbital angular momentum (OAM) when it traverses the gravitational field of a massive rotatin
Recent strong-field regime tests of gravity are so far in agreement with general relativity. In particular, astrophysical black holes appear all to be consistent with the Kerr spacetime, but the statistical error on current observations allows for sm
Accurately modeling astrophysical extreme-mass-ratio-insprials requires calculating the gravitational self-force for orbits in Kerr spacetime. The necessary calculation techniques are typically very complex and, consequently, toy scalar-field models
We consider the entanglement dynamics between two-level atoms in a rotating black hole background. In our model the two-atom system is envisaged as an open system coupled with a massless scalar field prepared in one of the physical vacuum states of i