ﻻ يوجد ملخص باللغة العربية
We present the analysis of new, deep HI observations of the spiral galaxy NGC 3198, as part of the HALOGAS (Westerbork Hydrogen Accretion in LOcal GAlaxieS) survey, with the main aim of investigating the presence, amount, morphology and kinematics of extraplanar gas. We present models of the HI observations of NGC 3198: the model that matches best the observed data cube features a thick disk with a scale height of ~3 kpc and an HI mass of about 15% of the total HI mass; this thick disk also has a decrease in rotation velocity as a function of height (lag) of 7-15 km/s/kpc (though with large uncertainties). This extraplanar gas is detected for the first time in NGC 3198. Radially, this gas appears to extend slightly beyond the actively star-forming body of the galaxy (as traced by the Halpha emission), but it is not more radially extended than the outer, fainter parts of the stellar disk. Compared to previous studies, thanks to the improved sensitivity we trace the rotation curve out to larger radii. We model the rotation curve in the framework of MOND (Modified Newtonian Dynamics) and we confirm that, with the allowed distance range we assumed, fit quality is modest in this galaxy, but the new outer parts are explained in a satisfactory way.
We present a systematic study of the extraplanar gas (EPG) in a sample of 15 nearby late-type galaxies at intermediate inclinations using publicly available, deep interferometric HI data from the HALOGAS survey. For each system we mask the HI emissio
The structure and kinematics of gaseous, disk-halo interfaces are imprinted with the processes that transfer mass, metals, and energy between galactic disks and their environments. We study the extraplanar diffuse ionized gas (eDIG) layer in the inte
We present a kinematic study of ionised extraplanar gas in two low-inclination late-type galaxies (NGC 3982 and NGC 4152) using integral field spectroscopy data from the DiskMass H$alpha$ sample. We first isolate the extraplanar gas emission by maski
The observed scale heights of extraplanar diffuse ionized gas (eDIG) layers exceed their thermal scale heights by a factor of a few in the Milky Way and other nearby edge-on disk galaxies. Here, we test a dynamical equilibrium model of the extraplana
We present the first kinematic study of extraplanar diffuse ionized gas (eDIG) in the nearby, face-on disk galaxy M83 using optical emission-line spectroscopy from the Robert Stobie Spectrograph on the Southern African Large Telescope. We use a Marko