ترغب بنشر مسار تعليمي؟ اضغط هنا

Proposal for the detection and braiding of Majorana fermions in a quantum spin Hall insulator

454   0   0.0 ( 0 )
 نشر من قبل Shuo Mi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how a quantum dot with a ballistic single-channel point contact to a superconductor can be created by means of a gate electrode at the edge of a quantum spin Hall insulator (such as an InAs/GaSb quantum well). A weak perpendicular magnetic field traps a Majorana zero-mode, so that it can be observed in the gate-voltage-averaged differential conductance <dI/dV> as a 4e^2/h zero-bias peak above a (2/3{pi}^2 - 4)e^2/h background. The one-dimensional edge does not permit the braiding of pairs of Majorana fermions, but this obstacle can be overcome by coupling opposite edges at a constriction, allowing for a demonstration of non-Abelian statistics.



قيم البحث

اقرأ أيضاً

Topological Majorana fermion (MF) quasiparticles have been recently suggested to exist in semiconductor quantum wires with proximity induced superconductivity and a Zeeman field. Although the experimentally observed zero bias tunneling peak and a fra ctional ac-Josephson effect can be taken as necessary signatures of MFs, neither of them constitutes a sufficient smoking gun experiment. Since one pair of Majorana fermions share a single conventional fermionic degree of freedom, MFs are in a sense fractionalized excitations. Based on this fractionalization we propose a tunneling experiment that furnishes a nearly unique signature of end state MFs in semiconductor quantum wires. In particular, we show that a teleportation-like experiment is not enough to distinguish MFs from pairs of MFs, which are equivalent to conventional zero energy states, but our proposed tunneling experiment, in principle, can make this distinction.
75 - Hong-Seok Kim , , Yong-Joo Doh 2019
Developing a gate-tunable, scalable, and topologically-protectable supercurrent qubit and integrating it into a quantum circuit are crucial for applications in the fields of quantum information technology and topological phenomena. Here we propose th at the nano-hybrid supercurrent transistors, a superconducting quantum analogue of a transistor, made of topological insulator nanowire would be a promising platform for unprecedented control of both the supercurrent magnitude and the current-phase relation by applying a voltage on a gate electrode. We believe that our experimental design will help probing Majorana state in topological insulator nanowire and establishing a solid-state platform for topological supercurrent qubit.
We study theoretically the electrical current and low-frequency noise for a linear Josephson junction structure on a topological insulator, in which the superconductor forms a closed ring and currents are injected from normal regions inside and outsi de the ring. We find that this geometry offers a signature for the presence of gapless 1D Majorana fermion modes that are predicted in the channel when the phase difference phi, controlled by the magnetic flux through the ring, is pi. We show that for low temperature the linear conductance jumps when phi passes through pi, accompanied by non-local correlations between the currents from the inside and outside of the ring. We compute the dependence of these features on temperature, voltage and linear dimensions, and discuss the implications for experiments.
We study the dynamical process of braiding Majorana bound states in the presence of the coupling to photons in a microwave cavity. We show theoretically that the $pi/4$ phase associated with the braiding of Majoranas, as well as the parity of the gro und state are imprinted into the photonic field of the cavity, which can be detected by dispersive readouts techniques. These manifestations are purely dynamical, they occur in the absence of any splitting of the MBS that are exchanged, and they disappear in the static setups studied previously. Conversely, the cavity can affect the braiding phase, which in turn should allow for cavity controlled braiding.
In this work, we demonstrate that making a cut (a narrow vacuum regime) in the bulk of a quantum anomalous Hall insulator (QAHI) creates a topologically protected single helical channel with counter-propagating electron modes, and inducing supercondu ctivity on the helical channel through proximity effect will create Majorana zero energy modes (MZMs) at the ends of the cut. In this geometry, there is no need for the proximity gap to overcome the bulk insulating gap of the QAHI to create MZMs as in the two-dimensional QAHI/superconductor (QAHI/SC) heterostructures. Therefore, the topological regime with MZMs is greatly enlarged. Furthermore, due to the presence of a single helical channel, the generation of low energy in-gap bound states caused by multiple conducting channels is avoided such that the MZMs can be well separated from other in-gap excitations in energy. This simple but practical approach allows the creation of a large number of MZMs in devices with complicated geometry such as hexons for measurement-based topological quantum computation. We further demonstrate how braiding of MZMs can be performed by controlling the coupling strength between the counter-propagating electron modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا