ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric Diamond Ising--Hubbard Chain with Attraction

40   0   0.0 ( 0 )
 نشر من قبل Bohdan Lisnii
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bohdan Lisnyi




اسأل ChatGPT حول البحث

The ground state and thermodynamic properties of an asymmetric diamond Ising--Hubbard chain with the on-site electron-electron attraction has been considered. The problem can be solved exactly using the decoration-iteration transformation. In the case of the antiferromagnetic Ising interaction, the influence of this attraction on the ground state and the temperature dependences of the magnetization, magnetic susceptibility, and specific heat has been studied.

قيم البحث

اقرأ أيضاً

72 - Masaki Oshikawa 2019
I study the universal finite-size scaling function for the lowest gap of the quantum Ising chain with a one-parameter family of ``defect boundary conditions, which includes periodic, open, and antiperiodic boundary conditions as special cases. The un iversal behavior can be described by the Majorana fermion field theory in $1+1$ dimensions, with the mass proportional to the deviation from the critical point. Although the field theory appears to be symmetric with respect to the inversion of the mass (Kramers-Wannier duality), the actual gap is asymmetric, reflecting the spontaneous symmetry breaking in the ordered phase which leads to the two-fold ground-state degeneracy in the thermodynamic limit. The asymptotic ground-state degeneracy in the ordered phase is realized by (i) formation of a bound state at the defect (except for the periodic/antiperiodic boundary condition) and (ii) effective reversal of the fermion number parity in one of the sectors (except for the open boundary condition), resulting in a rather nontrivial crossover ``phase diagram in the space of the boundary condition (defect strength) and mass.
The mixed spin-(1,1/2) Ising-Heisenberg model on a distorted diamond chain with the spin-1 nodal atoms and the spin-1/2 interstitial atoms is exactly solved by the transfer-matrix method. An influence of the geometric spin frustration and the paralle logram distortion on the ground state, magnetization, susceptibility and specific heat of the mixed-spin Ising-Heisenberg distorted diamond chain are investigated in detail. It is demonstrated that the zero-temperature magnetization curve may involve intermediate plateaus just at zero and one-half of the saturation magnetization. The temperature dependence of the specific heat may have up to three distinct peaks at zero magnetic field and up to four distinct peaks at a non-zero magnetic field. The origin of multipeak thermal behavior of the specific heat is comprehensively studied.
98 - Mi Jiang 2021
Motivated by the recent discovery of the anomalously near-neighbor attraction arising from the electron-phonon coupling, we quantitatively investigate the enhancing effects of this additional attractive channel on the $d$-wave SC based on dynamic clu ster quantum Monte Carlo calculations of doped two-dimensional extended Hubbard model with nearest-neighbor attraction $-V$. Focusing on the range of $0<-V/t le 2$, our simulations indicate that the dynamics of $d$-wave projected pairing interaction is attractive at all frequencies and increases with $|V|$. Moreover, turning on $-V$ attraction enhances the $(pi,pi)$ spin fluctuations but only enhances (suppresses) the charge fluctuations for small (large) momentum transfer. Thus, at $V/t=-1$ relevant to ``holon folding branch, the charge fluctuations are insufficient to compete with $d$-wave pairing interaction strengthened by enhanced spin fluctuations. Our work suggest the underlying rich interplay between the spin and charge fluctuations in giving rise to the superconducting properties.
The ground state and thermodynamics of a generalized spin-1/2 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins are calculated exactly using the mapping method based on the decoration-iteration transformation. Ri gorous results for the magnetization, susceptibility, and heat capacity are investigated in dependence on temperature and magnetic field for the frustrated diamond spin chain with the antiferromagnetic Ising and Heisenberg interactions. It is demonstrated that the second-neighbor interaction between nodal spins gives rise to a greater diversity of low-temperature magnetization curves, which may include an intermediate plateau at two-third of the saturation magnetization related to the classical ferrimagnetic (up-up-up-down-up-up-...) ground state with translationally broken symmetry besides an intermediate one-third magnetization plateau reflecting the translationally invariant quantum ferrimagnetic (monomer-dimer) spin arrangement.
65 - Jozef Strecka 2019
The spin-1/2 Ising diamond chain in a magnetic field displays a remarkable pseudo-transition whenever it is driven sufficiently close to a ground-state phase boundary between a classical ferrimagnetic phase and a highly degenerate frustrated phase. T he pseudo-transition of the spin-1/2 Ising diamond chain relates to intense thermal excitations from a nondegenerate ferrimagnetic ground state to a highly degenerate manifold of excited states with a frustrated character, which are responsible for an anomalous behavior of thermodynamic quantities. Temperature dependences of entropy and specific heat are indeed reminiscent of a temperature-driven phase transition of a discontinuous (entropy) or continuous (specific heat) nature though there are no true singularities of these thermodynamic quantities at a pseudo-critical temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا