ترغب بنشر مسار تعليمي؟ اضغط هنا

LaAlO3 stoichiometry found key to electron liquid formation at LaAlO3/SrTiO3 interfaces

335   0   0.0 ( 0 )
 نشر من قبل Maitri Warusawithana
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Emergent phenomena, including superconductivity and magnetism, found in the two-dimensional electron liquid (2-DEL) at the interface between the insulators LaAlO3 and SrTiO3 distinguish this rich system from conventional two-dimensional electron gases at compound semiconductor interfaces. The origin of this 2-DEL, however, is highly debated with focus on the role of defects in the SrTiO3 while the LaAlO3 has been assumed perfect. Our experiments and first principles calculations show that the cation stoichiometry of the nominal LaAlO3 layer is key to 2-DEL formation: only Al-rich LaAlO3 results in a 2-DEL. While extrinsic defects including oxygen deficiency are known to render LaAlO3/SrTiO3 samples conducting, our results show that in the absence of such extrinsic defects, an interface 2-DEL can form. Its origin is consistent with an intrinsic electronic reconstruction occurring to counteract a polarization catastrophe. This work provides a roadmap for identifying other interfaces where emergent behaviors await discovery.



قيم البحث

اقرأ أيضاً

Using tunneling spectroscopy we have measured the spectral density of states of the mobile, two-dimensional electron system generated at the LaAlO3-SrTiO3 interface. As shown by the density of states the interface electron system differs qualitativel y, first, from the electron systems of the materials defining the interface and, second, from the two-dimensional electron gases formed at interfaces between conventional semiconductors.
276 - O. Copie , V. Garcia , C. Bodefeld 2009
Using a low-temperature conductive-tip atomic force microscope in cross-section geometry we have characterized the local transport properties of the metallic electron gas that forms at the interface between LaAlO3 and SrTiO3. At low temperature, we f ind that the carriers do not spread away from the interface but are confined within ~10 nm, just like at room temperature. Simulations taking into account both the large temperature and electric-field dependence of the permittivity of SrTiO3 predict a confinement over a few nm for sheet carrier densities larger than ~6 10^13 cm-2. We discuss the experimental and simulations results in terms of a multi-band carrier system. Remarkably, the Fermi wavelength estimated from Hall measurements is ~16 nm, indicating that the electron gas in on the verge of two-dimensionality.
In recent years, striking discoveries have revealed that two-dimensional electron liquids (2DEL) confined at the interface between oxide band-insulators can be engineered to display a high mobility transport. The recognition that only few interfaces appear to suit hosting 2DEL is intriguing and challenges the understanding of these emerging properties not existing in bulk. Indeed, only the neutral TiO2 surface of (001)SrTiO3 has been shown to sustain 2DEL. We show that this restriction can be surpassed: (110) and (111) surfaces of SrTiO3 interfaced with epitaxial LaAlO3 layers, above a critical thickness, display 2DEL transport with mobilities similar to those of (001)SrTiO3. Moreover we show that epitaxial interfaces are not a prerequisite: conducting (110) interfaces with amorphous LaAlO3 and other oxides can also be prepared. These findings open a new perspective both for materials research and for elucidating the ultimate microscopic mechanism of carrier doping.
Conventional two-dimensional electron gases are realized by engineering the interfaces between semiconducting compounds. In 2004, Ohtomo and Hwang discovered that an electron gas can be also realized at the interface between large gap insulators made of transition metal oxides [1]. This finding has generated considerable efforts to clarify the underlying microscopic mechanism. Of particular interest is the LaAlO3/SrTiO3 system, because it features especially striking properties. High carrier mobility [1], electric field tuneable superconductivity [2] and magnetic effects [3], have been found. Here we show that an orbital reconstruction is underlying the generation of the electron gas at the LaAlO3/SrTiO3 n-type interface. Our results are based on extensive investigations of the electronic properties and of the orbital structure of the interface using X-ray Absorption Spectroscopy. In particular we find that the degeneracy of the Ti 3d states is fully removed, and that the Ti 3dxy levels become the first available states for conducting electrons.
176 - Z. Q. Liu , C. J. Li , W. M. Lu 2013
The relative importance of atomic defects and electron transfer in explaining conductivity at the crystalline LaAlO3/SrTiO3 interface has been a topic of debate. Metallic interfaces with similar electronic properties produced by amorphous oxide overl ayers on SrTiO3 have called in question the original polarization catastrophe model. We resolve the issue by a comprehensive comparison of (100)-oriented SrTiO3 substrates with crystalline and amorphous overlayers of LaAlO3 of different thicknesses prepared under different oxygen pressures. For both types of overlayers, there is a critical thickness for the appearance of conductivity, but its value is always 4 unit cells (around 1.6 nm) for the oxygen-annealed crystalline case, whereas in the amorphous case, the critical thickness could be varied in the range 0.5 to 6 nm according to the deposition conditions. Subsequent ion milling of the overlayer restores the insulating state for the oxygen-annealed crystalline heterostructures but not for the amorphous ones. Oxygen post-annealing removes the oxygen vacancies, and the interfaces become insulating in the amorphous case. However, the interfaces with a crystalline overlayer remain conducting with reduced carrier density. These results demonstrate that oxygen vacancies are the dominant source of mobile carriers when the LaAlO3 overlayer is amorphous, while both oxygen vacancies and polarization catastrophe contribute to the interface conductivity in unannealed crystalline LaAlO3/SrTiO3 heterostructures, and the polarization catastrophe alone accounts for the conductivity in oxygen-annealed crystalline LaAlO3/SrTiO3 heterostructures. Furthermore, we find that the crystallinity of the LaAlO3 layer is crucial for the polarization catastrophe mechanism in the case of crystalline LaAlO3 overlayers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا