ترغب بنشر مسار تعليمي؟ اضغط هنا

Propagation into the heliosheath of a large-scale solar wind disturbance bounded by a pair of shocks

118   0   0.0 ( 0 )
 نشر من قبل Elena Provornikova
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After the termination shock (TS) crossing, the Voyager 2 spacecraft has been observing strong variations of the magnetic field and solar wind parameters in the heliosheath. Anomalous cosmic rays, electrons, and galactic cosmic rays present strong intensity fluctuations. Several works suggested that the fluctuations might be attributed to spatial variations within the heliosheath. Additionally, the variability of the solar wind in this region is caused by different temporal events that occur near the Sun and propagate to the outer heliosphere. To understand the spatial and temporal effects in the heliosheath, it is important to study these effects separately. In this work we explore the role of shocks as one type of temporal effects in the dynamics of the heliosheath. Although currently plasma in the heliosheath is dominated by solar minima conditions, with increasing solar cycle shocks associated with transients will play an important role. We used a 3D MHD multi-fluid model of the interaction between the solar wind and the local interstellar medium to study the propagation of a pair of forward-reverse shocks in the supersonic solar wind, interaction with the TS, and propagation to the heliosheath. We found that in the supersonic solar wind the interaction region between the shocks expands, the shocks weaken and decelerate. The fluctuation amplitudes of the plasma parameters vary with heliocentric distance. The interaction of the pair of shocks with the TS creates a variety of new waves and discontinuities in the heliosheath, which produce a highly variable solar wind flow. The collision of the forward shock with the heliopause causes a reflection of fast magnetosonic waves inside the heliosheath.

قيم البحث

اقرأ أيضاً

On November 4th 2015 secondary air traffic control radar was strongly disturbed in Sweden and some other European countries. The disturbances occurred when the radar antennas were pointing at the Sun. In this paper, we show that the disturbances coin cided with the time of peaks of an exceptionally strong ($sim 10^5$ Solar Flux Units) solar radio burst in a relatively narrow frequency range around 1~GHz. This indicates that this radio burst is the most probable space weather candidate for explaining the radar disturbances. The dynamic radio spectrum shows that the high flux densities are not due to synchrotron emission of energetic electrons, but to coherent emission processes, which produce a large variety of rapidly varying short bursts (such as pulsations, fiber bursts, and zebra patterns). The radio burst occurs outside the impulsive phase of the associated flare, about 30 minutes after the soft X-ray peak, and it is temporarily associated with fast evolving activity occurring in strong solar magnetic fields. While the relationship with strong magnetic fields and the coherent spectral nature of the radio burst provide hints towards the physical processes which generate such disturbances, we have so far no means to forecast them. Well-calibrated monitoring instruments of whole Sun radio fluxes covering the UHF band could at least provide a real-time identification of the origin of such disturbances, which reports in the literature show to also affect GPS signal reception.
The acceleration of thermal solar wind protons at spherical interplanetary shocks driven by coronal mass ejections is investigated. The solar wind velocity distribution is represented using $kappa$-functions, which are transformed in response to simu lated shock transitions in the fixed-frame flow speed, plasma number density, and temperature. These heated solar wind distributions are specified as source spectra at the shock from which particles with sufficient energy can be injected into the diffusive shock acceleration process. It is shown that for shock-accelerated spectra to display the classically expected power-law indices associated with the compression ratio, diffusion length scales must exceed the width of the compression region. The maximum attainable energies of shock-accelerated spectra are found to be limited by the transit times of interplanetary shocks, while spectra may be accelerated to higher energies in the presence of higher levels of magnetic turbulence or at faster-moving shocks. Indeed, simulations suggest fast-moving shocks are more likely to produce very high-energy particles, while strong shocks, associated with harder shock-accelerated spectra, are linked to higher intensities of energetic particles. The prior heating of the solar wind distribution is found to complement shock acceleration in reproducing the intensities of typical energetic storm particle events, especially where injection energies are high. Moreover, simulations of $sim$0.2 to 1 MeV proton intensities are presented that naturally reproduce the observed flat energy spectra prior to shock passages. Energetic particles accelerated from the solar wind, aided by its prior heating, are shown to contribute substantially to intensities during energetic storm particle events.
Plasma outflows from the edges of active regions have been suggested as a possible source of the slow solar wind. Spectroscopic measurements show that these outflows have an enhanced elemental composition, which is a distinct signature of the slow wi nd. Current spectroscopic observations, however, do not have sufficient spatial resolution to distinguish what structures are being measured or to determine the driver of the outflows. The High-resolution Coronal Imager (Hi-C) flew on a sounding rocket in May, 2018, and observed areas of active region outflow at the highest spatial resolution ever achieved (250 km). Here we use the Hi-C data to disentangle the outflow composition signatures observed with the Hinode satellite during the flight. We show that there are two components to the outflow emission: a substantial contribution from expanded plasma that appears to have been expelled from closed loops in the active region core, and a second contribution from dynamic activity in active region plage, with a composition signature that reflects solar photospheric abundances. The two competing drivers of the outflows may explain the variable composition of the slow solar wind.
During Parker Solar Probes first orbit, the solar wind plasma has been observed in situ closer than ever before, the perihelion on November 6th 2018 revealing a flow that is constantly permeated by large amplitude Alfvenic fluctuations. These include radial magnetic field reversals, or switchbacks, that seem to be a persistent feature of the young solar wind. The measurements also reveal a very strong, unexpected, azimuthal velocity component. In this work, we numerically model the solar corona during this first encounter, solving the MHD equations and accounting for Alfven wave transport and dissipation. We find that the large scale plasma parameters are well reproduced, allowing the computation of the solar wind sources at Probe with confidence. We try to understand the dynamical nature of the solar wind to explain both the amplitude of the observed radial magnetic field and of the azimuthal velocities.
We study three CME/ICME events (2008 June 1-6, 2009 February 13-18, 2010 April 3-5) tracked from Sun to 1 AU in remote-sensing observations of STEREO Heliospheric Imagers and in situ plasma and magnetic field measurements. We focus on the ICME propag ation in IP space that is governed by two forces, the propelling Lorentz force and the drag force. We address the question at which heliospheric distance range the drag becomes dominant and the CME gets adjusted to the solar wind flow. To this aim we analyze speed differences between ICMEs and the ambient solar wind flow as function of distance. The evolution of the ambient solar wind flow is derived from ENLIL 3D MHD model runs using different solar wind models, namely Wang-Sheeley-Arge (WSA) and MHD-Around-A-Sphere (MAS). Comparing the measured CME kinematics with the solar wind models we find that the CME speed gets adjusted to the solar wind speed at very different heliospheric distances in the three events under study: from below 30 Rs, to beyond 1 AU, depending on the CME and ambient solar wind characteristics. ENLIL can be used to derive important information about the overall structure of the background solar wind, providing more reliable results during times of low solar activity than during times of high solar activity. The results from this study enable us to get a better insight into the forces acting on CMEs over the IP space distance range, which is an important prerequisite in order to predict their 1 AU transit times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا